Cargando…

Lack of chromokinesin Klp-19 creates a more rigid midzone and affects force transmission during anaphase in C. elegans

Recent studies have highlighted the significance of the spindle midzone – the region positioned between chromosomes – in ensuring proper chromosome segregation. By combining advanced 3D electron tomography and cutting-edge light microscopy we have discovered a previously unknown role of the regulati...

Descripción completa

Detalles Bibliográficos
Autores principales: Zimyanin, Vitaly, Magaj, Magdalena, Yu, Che-Hang, Gibney, Theresa, Mustafa, Basaran, Horton, Xavier, Siller, Karsten, Cueff, Louis, Bouvrais, Hélène, Pécréaux, Jacques, Needleman, Daniel, Redemann, Stefanie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634869/
https://www.ncbi.nlm.nih.gov/pubmed/37961478
http://dx.doi.org/10.1101/2023.10.26.564275
Descripción
Sumario:Recent studies have highlighted the significance of the spindle midzone – the region positioned between chromosomes – in ensuring proper chromosome segregation. By combining advanced 3D electron tomography and cutting-edge light microscopy we have discovered a previously unknown role of the regulation of microtubule dynamics within the spindle midzone of C. elegans. Using Fluorescence recovery after photobleaching and a combination of second harmonic generation and two-photon fluorescence microscopy, we found that the length of the antiparallel microtubule overlap zone in the spindle midzone is constant throughout anaphase, and independent of cortical pulling forces as well as the presence of the microtubule bundling protein SPD-1. Further investigations of SPD-1 and the chromokinesin KLP-19 in C. elegans suggest that KLP-19 regulates the overlap length and functions independently of SPD-1. Our data shows that KLP-19 plays an active role in regulating the length and turn-over of microtubules within the midzone as well as the size of the antiparallel overlap region throughout mitosis. Depletion of KLP-19 in mitosis leads to an increase in microtubule length in the spindle midzone, which also leads to increased microtubule – microtubule interaction, thus building up a more robust microtubule network. The spindle is globally stiffer and more stable, which has implications for the transmission of forces within the spindle affecting chromosome segregation dynamics. Our data shows that by localizing KLP-19 to the spindle midzone in anaphase microtubule dynamics can be locally controlled allowing the formation of a functional midzone.