Cargando…
Automated machine learning and explainable AI (AutoML-XAI) for metabolomics: improving cancer diagnostics
MOTIVATION: Metabolomics generates complex data necessitating advanced computational methods for generating biological insight. While machine learning (ML) is promising, the challenges of selecting the best algorithms and tuning hyperparameters, particularly for non-experts, remain. Automated machin...
Autores principales: | Bifarin, Olatomiwa O., Fernández, Facundo M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634896/ https://www.ncbi.nlm.nih.gov/pubmed/37961534 http://dx.doi.org/10.1101/2023.10.26.564244 |
Ejemplares similares
-
Hierarchical automated machine learning (AutoML) for advanced unconventional reservoir characterization
por: Mubarak, Yousef, et al.
Publicado: (2023) -
AutoML for Fast Simulation
por: Nascimento Ferreira, Poliana
Publicado: (2021) -
Net-Net Auto Machine Learning (AutoML) Prediction of Complex Ecosystems
por: Barreiro, Enrique, et al.
Publicado: (2018) -
Author Correction: Hierarchical automated machine learning (AutoML) for advanced unconventional reservoir characterization
por: Mubarak, Yousef, et al.
Publicado: (2023) -
Hands-on automated machine learning: a beginner's guide to building automated machine learning systems using AutoML and Python
por: Das, Sibanjan, et al.
Publicado: (2018)