Cargando…
A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds
Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated po...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634906/ https://www.ncbi.nlm.nih.gov/pubmed/37961681 http://dx.doi.org/10.1101/2023.10.27.564364 |
_version_ | 1785146259085983744 |
---|---|
author | Szydlowska, Beata M. Ding, Yonghui Moore, Connor Cai, Zizhen Torres-Castanedo, Carlos G. Jones, Evan Hersam, Mark C. Sun, Cheng Ameer, Guillermo A. |
author_facet | Szydlowska, Beata M. Ding, Yonghui Moore, Connor Cai, Zizhen Torres-Castanedo, Carlos G. Jones, Evan Hersam, Mark C. Sun, Cheng Ameer, Guillermo A. |
author_sort | Szydlowska, Beata M. |
collection | PubMed |
description | Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and MoS(2) nanosheets to fabricate novel X-ray visible radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS(2)). The composite was used as an ink with micro continuous liquid interface production (μCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, required X-ray visibility in air and muscle tissue. Notably, MoS(2) nanosheets displayed physical degradation over time in a PBS environment, indicating the potential for producing bioresorbable devices. mPDC-MoS(2) is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, particularly vascular scaffolds or stents, that require non-invasive X-ray-based monitoring techniques for implantation and evaluation. This innovative composite system holds significant promise for the development of biocompatible and highly visible medical implants, potentially enhancing patient outcomes and reducing medical complications. |
format | Online Article Text |
id | pubmed-10634906 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-106349062023-11-13 A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds Szydlowska, Beata M. Ding, Yonghui Moore, Connor Cai, Zizhen Torres-Castanedo, Carlos G. Jones, Evan Hersam, Mark C. Sun, Cheng Ameer, Guillermo A. bioRxiv Article Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and MoS(2) nanosheets to fabricate novel X-ray visible radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS(2)). The composite was used as an ink with micro continuous liquid interface production (μCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, required X-ray visibility in air and muscle tissue. Notably, MoS(2) nanosheets displayed physical degradation over time in a PBS environment, indicating the potential for producing bioresorbable devices. mPDC-MoS(2) is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, particularly vascular scaffolds or stents, that require non-invasive X-ray-based monitoring techniques for implantation and evaluation. This innovative composite system holds significant promise for the development of biocompatible and highly visible medical implants, potentially enhancing patient outcomes and reducing medical complications. Cold Spring Harbor Laboratory 2023-11-01 /pmc/articles/PMC10634906/ /pubmed/37961681 http://dx.doi.org/10.1101/2023.10.27.564364 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Szydlowska, Beata M. Ding, Yonghui Moore, Connor Cai, Zizhen Torres-Castanedo, Carlos G. Jones, Evan Hersam, Mark C. Sun, Cheng Ameer, Guillermo A. A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds |
title | A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds |
title_full | A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds |
title_fullStr | A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds |
title_full_unstemmed | A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds |
title_short | A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds |
title_sort | polydiolcitrate-mos(2) composite for 3d printing radio-opaque, bioresorbable vascular scaffolds |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634906/ https://www.ncbi.nlm.nih.gov/pubmed/37961681 http://dx.doi.org/10.1101/2023.10.27.564364 |
work_keys_str_mv | AT szydlowskabeatam apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT dingyonghui apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT mooreconnor apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT caizizhen apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT torrescastanedocarlosg apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT jonesevan apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT hersammarkc apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT suncheng apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT ameerguillermoa apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT szydlowskabeatam polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT dingyonghui polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT mooreconnor polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT caizizhen polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT torrescastanedocarlosg polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT jonesevan polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT hersammarkc polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT suncheng polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds AT ameerguillermoa polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds |