Cargando…

A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds

Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated po...

Descripción completa

Detalles Bibliográficos
Autores principales: Szydlowska, Beata M., Ding, Yonghui, Moore, Connor, Cai, Zizhen, Torres-Castanedo, Carlos G., Jones, Evan, Hersam, Mark C., Sun, Cheng, Ameer, Guillermo A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634906/
https://www.ncbi.nlm.nih.gov/pubmed/37961681
http://dx.doi.org/10.1101/2023.10.27.564364
_version_ 1785146259085983744
author Szydlowska, Beata M.
Ding, Yonghui
Moore, Connor
Cai, Zizhen
Torres-Castanedo, Carlos G.
Jones, Evan
Hersam, Mark C.
Sun, Cheng
Ameer, Guillermo A.
author_facet Szydlowska, Beata M.
Ding, Yonghui
Moore, Connor
Cai, Zizhen
Torres-Castanedo, Carlos G.
Jones, Evan
Hersam, Mark C.
Sun, Cheng
Ameer, Guillermo A.
author_sort Szydlowska, Beata M.
collection PubMed
description Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and MoS(2) nanosheets to fabricate novel X-ray visible radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS(2)). The composite was used as an ink with micro continuous liquid interface production (μCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, required X-ray visibility in air and muscle tissue. Notably, MoS(2) nanosheets displayed physical degradation over time in a PBS environment, indicating the potential for producing bioresorbable devices. mPDC-MoS(2) is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, particularly vascular scaffolds or stents, that require non-invasive X-ray-based monitoring techniques for implantation and evaluation. This innovative composite system holds significant promise for the development of biocompatible and highly visible medical implants, potentially enhancing patient outcomes and reducing medical complications.
format Online
Article
Text
id pubmed-10634906
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-106349062023-11-13 A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds Szydlowska, Beata M. Ding, Yonghui Moore, Connor Cai, Zizhen Torres-Castanedo, Carlos G. Jones, Evan Hersam, Mark C. Sun, Cheng Ameer, Guillermo A. bioRxiv Article Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and MoS(2) nanosheets to fabricate novel X-ray visible radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS(2)). The composite was used as an ink with micro continuous liquid interface production (μCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, required X-ray visibility in air and muscle tissue. Notably, MoS(2) nanosheets displayed physical degradation over time in a PBS environment, indicating the potential for producing bioresorbable devices. mPDC-MoS(2) is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, particularly vascular scaffolds or stents, that require non-invasive X-ray-based monitoring techniques for implantation and evaluation. This innovative composite system holds significant promise for the development of biocompatible and highly visible medical implants, potentially enhancing patient outcomes and reducing medical complications. Cold Spring Harbor Laboratory 2023-11-01 /pmc/articles/PMC10634906/ /pubmed/37961681 http://dx.doi.org/10.1101/2023.10.27.564364 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Szydlowska, Beata M.
Ding, Yonghui
Moore, Connor
Cai, Zizhen
Torres-Castanedo, Carlos G.
Jones, Evan
Hersam, Mark C.
Sun, Cheng
Ameer, Guillermo A.
A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds
title A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds
title_full A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds
title_fullStr A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds
title_full_unstemmed A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds
title_short A polydiolcitrate-MoS(2) composite for 3D printing Radio-opaque, Bioresorbable Vascular Scaffolds
title_sort polydiolcitrate-mos(2) composite for 3d printing radio-opaque, bioresorbable vascular scaffolds
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634906/
https://www.ncbi.nlm.nih.gov/pubmed/37961681
http://dx.doi.org/10.1101/2023.10.27.564364
work_keys_str_mv AT szydlowskabeatam apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT dingyonghui apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT mooreconnor apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT caizizhen apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT torrescastanedocarlosg apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT jonesevan apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT hersammarkc apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT suncheng apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT ameerguillermoa apolydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT szydlowskabeatam polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT dingyonghui polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT mooreconnor polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT caizizhen polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT torrescastanedocarlosg polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT jonesevan polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT hersammarkc polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT suncheng polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds
AT ameerguillermoa polydiolcitratemos2compositefor3dprintingradioopaquebioresorbablevascularscaffolds