Cargando…
Leveraging Julia’s automated differentiation and symbolic computation to increase spectral DCM flexibility and speed
Using neuroimaging and electrophysiological data to infer neural parameter estimations from theoretical circuits requires solving the inverse problem. Here, we provide a new Julia language package designed to i) compose complex dynamical models in a simple and modular way with ModelingToolkit.jl, ii...
Autores principales: | Hofmann, David, Chesebro, Anthony G., Rackauckas, Chris, Mujica-Parodi, Lilianne R., Friston, Karl J., Edelman, Alan, Strey, Helmut H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634910/ https://www.ncbi.nlm.nih.gov/pubmed/37961652 http://dx.doi.org/10.1101/2023.10.27.564407 |
Ejemplares similares
-
Making Sense of Computational Psychiatry
por: Mujica-Parodi, Lilianne R, et al.
Publicado: (2020) -
Network discovery with DCM
por: Friston, Karl J., et al.
Publicado: (2011) -
Julia: high performance programming : learning path : leverage the power of Julia to design and develop high performing programs
por: Balbaert, Ivo, et al.
Publicado: (2016) -
Julia high performance: optimizations, distributed computing, multithreading, and GPU programming with Julia 1.0 and beyond
por: Sengupta, Avik, et al.
Publicado: (2019) -
Comparing hemodynamic models with DCM
por: Stephan, Klaas Enno, et al.
Publicado: (2007)