Cargando…
Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations
Electron microscopy (EM) enables imaging at nanometer resolution and can shed light on how cancer evolves to develop resistance to therapy. Acquiring these images has become a routine task; however, analyzing them is now the bottleneck, as manual structure identification is very time-consuming and c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635003/ https://www.ncbi.nlm.nih.gov/pubmed/37961180 http://dx.doi.org/10.1101/2023.10.30.563998 |
_version_ | 1785146273819525120 |
---|---|
author | Pagano, Lucas Thibault, Guillaume Bousselham, Walid Riesterer, Jessica L. Song, Xubo Gray, Joe W. |
author_facet | Pagano, Lucas Thibault, Guillaume Bousselham, Walid Riesterer, Jessica L. Song, Xubo Gray, Joe W. |
author_sort | Pagano, Lucas |
collection | PubMed |
description | Electron microscopy (EM) enables imaging at nanometer resolution and can shed light on how cancer evolves to develop resistance to therapy. Acquiring these images has become a routine task; however, analyzing them is now the bottleneck, as manual structure identification is very time-consuming and can take up to several months for a single sample. Deep learning approaches offer a suitable solution to speed up the analysis. In this work, we present a study of several state-of-the-art deep learning models for the task of segmenting nuclei and nucleoli in volumes from tumor biopsies. We compared previous results obtained with the ResUNet architecture to the more recent UNet++, FracTALResNet, SenFormer, and CEECNet models. In addition, we explored the utilization of unlabeled images through semi-supervised learning with Cross Pseudo Supervision. We have trained and evaluated all of the models on sparse manual labels from three fully annotated in-house datasets that we have made available on demand, demonstrating improvements in terms of 3D Dice score. From the analysis of these results, we drew conclusions on the relative gains of using more complex models, semi-supervised learning as well as next steps for the mitigation of the manual segmentation bottleneck. |
format | Online Article Text |
id | pubmed-10635003 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-106350032023-11-13 Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations Pagano, Lucas Thibault, Guillaume Bousselham, Walid Riesterer, Jessica L. Song, Xubo Gray, Joe W. bioRxiv Article Electron microscopy (EM) enables imaging at nanometer resolution and can shed light on how cancer evolves to develop resistance to therapy. Acquiring these images has become a routine task; however, analyzing them is now the bottleneck, as manual structure identification is very time-consuming and can take up to several months for a single sample. Deep learning approaches offer a suitable solution to speed up the analysis. In this work, we present a study of several state-of-the-art deep learning models for the task of segmenting nuclei and nucleoli in volumes from tumor biopsies. We compared previous results obtained with the ResUNet architecture to the more recent UNet++, FracTALResNet, SenFormer, and CEECNet models. In addition, we explored the utilization of unlabeled images through semi-supervised learning with Cross Pseudo Supervision. We have trained and evaluated all of the models on sparse manual labels from three fully annotated in-house datasets that we have made available on demand, demonstrating improvements in terms of 3D Dice score. From the analysis of these results, we drew conclusions on the relative gains of using more complex models, semi-supervised learning as well as next steps for the mitigation of the manual segmentation bottleneck. Cold Spring Harbor Laboratory 2023-11-01 /pmc/articles/PMC10635003/ /pubmed/37961180 http://dx.doi.org/10.1101/2023.10.30.563998 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Pagano, Lucas Thibault, Guillaume Bousselham, Walid Riesterer, Jessica L. Song, Xubo Gray, Joe W. Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations |
title | Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations |
title_full | Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations |
title_fullStr | Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations |
title_full_unstemmed | Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations |
title_short | Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations |
title_sort | efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635003/ https://www.ncbi.nlm.nih.gov/pubmed/37961180 http://dx.doi.org/10.1101/2023.10.30.563998 |
work_keys_str_mv | AT paganolucas efficientsemisupervisedsemanticsegmentationofelectronmicroscopycancerimageswithsparseannotations AT thibaultguillaume efficientsemisupervisedsemanticsegmentationofelectronmicroscopycancerimageswithsparseannotations AT bousselhamwalid efficientsemisupervisedsemanticsegmentationofelectronmicroscopycancerimageswithsparseannotations AT riestererjessical efficientsemisupervisedsemanticsegmentationofelectronmicroscopycancerimageswithsparseannotations AT songxubo efficientsemisupervisedsemanticsegmentationofelectronmicroscopycancerimageswithsparseannotations AT grayjoew efficientsemisupervisedsemanticsegmentationofelectronmicroscopycancerimageswithsparseannotations |