Cargando…
Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations
Electron microscopy (EM) enables imaging at nanometer resolution and can shed light on how cancer evolves to develop resistance to therapy. Acquiring these images has become a routine task; however, analyzing them is now the bottleneck, as manual structure identification is very time-consuming and c...
Autores principales: | Pagano, Lucas, Thibault, Guillaume, Bousselham, Walid, Riesterer, Jessica L., Song, Xubo, Gray, Joe W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635003/ https://www.ncbi.nlm.nih.gov/pubmed/37961180 http://dx.doi.org/10.1101/2023.10.30.563998 |
Ejemplares similares
-
Feature-enhanced adversarial semi-supervised semantic segmentation network for pulmonary embolism annotation
por: Cheng, Ting-Wei, et al.
Publicado: (2023) -
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023) -
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021) -
Semi-Self-Supervised Learning for Semantic Segmentation in Images with Dense Patterns
por: Najafian, Keyhan, et al.
Publicado: (2023) -
Semi-Supervised Semantic Segmentation of Remote Sensing Images Based on Dual Cross-Entropy Consistency
por: Cui, Mengtian, et al.
Publicado: (2023)