Cargando…
A high-throughput screen identifies RNA binding proteins that affect fertility in Caenorhabditis elegans and reveals a functional relationship between ADR-2 and SQD-1
RNA binding proteins play essential roles in coordinating germline gene expression and development in all organisms. Characterization of gross fertility defects, such as sterility, has identified RNA binding proteins that are critical regulators of germline gene expression; however, broader screens...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635048/ https://www.ncbi.nlm.nih.gov/pubmed/37961348 http://dx.doi.org/10.1101/2023.11.01.565157 |
Sumario: | RNA binding proteins play essential roles in coordinating germline gene expression and development in all organisms. Characterization of gross fertility defects, such as sterility, has identified RNA binding proteins that are critical regulators of germline gene expression; however, broader screens for RNA binding proteins involved in specific reproductive processes are lacking. Here, a reverse genetic screen was performed to identify RNA binding proteins that impact yolk and embryo production in Caenorhabditis elegans hermaphrodites. This screen makes use of animals expressing a vitellogenin (yolk protein) fusion with green fluorescent protein, in a genetic background that corrects for a previously identified fertility defect in this strain. From this screen, we identified 23 RNA binding proteins that regulate embryo production in Caenorhabditis elegans. This screen lays groundwork for future interrogations into the molecular roles of these proteins in yolk production and embryogenesis. Additionally, the screen uncovered a genetic interaction between ADR-2, a member of the Adenosine DeAminase Acting on RNA (ADAR) family, and SQD-1, a member of the heterogenous nuclear ribonucleoprotein (hnRNP) family. Transcriptome-wide assessment in animals depleted of sqd-1 revealed over 8000 misregulated transcripts, suggesting SQD-1 is a major regulator of gene expression. Consistent with this, microscopy and reproductive assays reveal that sqd-1 is essential for oogenesis. In the absence of adr-2, the effects of loss of sqd-1 on gene expression are attenuated, as well as the defects in oogenesis. Together, these data indicate that both ADR-2 and SQD-1 are important regulators of germline gene expression and oogenesis. |
---|