Cargando…

Ciliary intrinsic mechanisms regulate dynamic ciliary extracellular vesicle release from sensory neurons

Cilia-derived extracellular vesicles (EVs) contain signaling proteins and act in intercellular communication. Polycystin-2 (PKD-2), a transient receptor potential channel, is a conserved ciliary EVs cargo. Caenorhabditis elegans serves as a model for studying ciliary EV biogenesis and function. C. e...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Juan, Saul, Josh, Nikonorova, Inna A., Cruz, Carlos Nava, Power, Kaiden M., Nguyen, Ken C., Hall, David H., Barr, Maureen M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635059/
https://www.ncbi.nlm.nih.gov/pubmed/37961114
http://dx.doi.org/10.1101/2023.11.01.565151
Descripción
Sumario:Cilia-derived extracellular vesicles (EVs) contain signaling proteins and act in intercellular communication. Polycystin-2 (PKD-2), a transient receptor potential channel, is a conserved ciliary EVs cargo. Caenorhabditis elegans serves as a model for studying ciliary EV biogenesis and function. C. elegans males release EVs in a mechanically-induced manner and deposit PKD-2-labeled EVs onto the hermaphrodite vulva during mating, suggesting an active release process. Here, we study the dynamics of ciliary EV release using time-lapse imaging and find that cilia can sustain the release of PKD-2-labeled EVs for a two-hour duration. Intriguingly, this extended release doesn’t require neuronal synaptic transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The ciliary kinesin-3 motor KLP-6 is necessary for both initial and extended ciliary EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dihydroceramide desaturase DEGS1/2 ortholog TTM-5 is highly expressed in the EV-releasing sensory neurons, localizes to cilia, and is required for sustained but not initial ciliary EV release, implicating ceramide in ciliary ectocytosis. The study offers a comprehensive portrait of real-time ciliary EV release, and mechanisms supporting cilia as proficient EV release platforms.