Cargando…
Integrating single-cell RNA-seq datasets with substantial batch effects
Computational methods for integrating scRNA-seq datasets often struggle to harmonize datasets with substantial differences driven by technical or biological variation, such as between different species, organoids and primary tissue, or different scRNA-seq protocols, including single-cell and single-...
Autores principales: | Hrovatin, Karin, Moinfar, Amir Ali, Lapuerta, Alejandro Tejada, Zappia, Luke, Lengerich, Ben, Kellis, Manolis, Theis, Fabian J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635119/ https://www.ncbi.nlm.nih.gov/pubmed/37961672 http://dx.doi.org/10.1101/2023.11.03.565463 |
Ejemplares similares
-
Population-level integration of single-cell datasets enables multi-scale analysis across samples
por: De Donno, Carlo, et al.
Publicado: (2023) -
Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape
por: Zappia, Luke, et al.
Publicado: (2021) -
Toward modeling metabolic state from single-cell transcriptomics
por: Hrovatin, Karin, et al.
Publicado: (2021) -
Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas
por: Hrovatin, Karin, et al.
Publicado: (2023) -
POIBM: batch correction of heterogeneous RNA-seq datasets through latent sample matching
por: Holmström, Susanna, et al.
Publicado: (2022)