Cargando…

Decoding Genetics, Ancestry, and Geospatial Context for Precision Health

Mass General Brigham, an integrated healthcare system based in the Greater Boston area of Massachusetts, annually serves 1.5 million patients. We established the Mass General Brigham Biobank (MGBB), encompassing 142,238 participants, to unravel the intricate relationships among genomic profiles, env...

Descripción completa

Detalles Bibliográficos
Autores principales: Koyama, Satoshi, Wang, Ying, Paruchuri, Kaavya, Uddin, Md Mesbah, Cho, So Mi J., Urbut, Sarah M., Haidermota, Sara, Hornsby, Whitney E., Green, Robert C., Daly, Mark J., Neale, Benjamin M., Ellinor, Patrick T., Smoller, Jordan W., Lebo, Matthew S., Karlson, Elizabeth W., Martin, Alicia R., Natarajan, Pradeep
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635180/
https://www.ncbi.nlm.nih.gov/pubmed/37961173
http://dx.doi.org/10.1101/2023.10.24.23297096
_version_ 1785146300571844608
author Koyama, Satoshi
Wang, Ying
Paruchuri, Kaavya
Uddin, Md Mesbah
Cho, So Mi J.
Urbut, Sarah M.
Haidermota, Sara
Hornsby, Whitney E.
Green, Robert C.
Daly, Mark J.
Neale, Benjamin M.
Ellinor, Patrick T.
Smoller, Jordan W.
Lebo, Matthew S.
Karlson, Elizabeth W.
Martin, Alicia R.
Natarajan, Pradeep
author_facet Koyama, Satoshi
Wang, Ying
Paruchuri, Kaavya
Uddin, Md Mesbah
Cho, So Mi J.
Urbut, Sarah M.
Haidermota, Sara
Hornsby, Whitney E.
Green, Robert C.
Daly, Mark J.
Neale, Benjamin M.
Ellinor, Patrick T.
Smoller, Jordan W.
Lebo, Matthew S.
Karlson, Elizabeth W.
Martin, Alicia R.
Natarajan, Pradeep
author_sort Koyama, Satoshi
collection PubMed
description Mass General Brigham, an integrated healthcare system based in the Greater Boston area of Massachusetts, annually serves 1.5 million patients. We established the Mass General Brigham Biobank (MGBB), encompassing 142,238 participants, to unravel the intricate relationships among genomic profiles, environmental context, and disease manifestations within clinical practice. In this study, we highlight the impact of ancestral diversity in the MGBB by employing population genetics, geospatial assessment, and association analyses of rare and common genetic variants. The population structures captured by the genetics mirror the sequential immigration to the Greater Boston area throughout American history, highlighting communities tied to shared genetic and environmental factors. Our investigation underscores the potency of unbiased, large-scale analyses in a healthcare-affiliated biobank, elucidating the dynamic interplay across genetics, immigration, structural geospatial factors, and health outcomes in one of the earliest American sites of European colonization.
format Online
Article
Text
id pubmed-10635180
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-106351802023-11-13 Decoding Genetics, Ancestry, and Geospatial Context for Precision Health Koyama, Satoshi Wang, Ying Paruchuri, Kaavya Uddin, Md Mesbah Cho, So Mi J. Urbut, Sarah M. Haidermota, Sara Hornsby, Whitney E. Green, Robert C. Daly, Mark J. Neale, Benjamin M. Ellinor, Patrick T. Smoller, Jordan W. Lebo, Matthew S. Karlson, Elizabeth W. Martin, Alicia R. Natarajan, Pradeep medRxiv Article Mass General Brigham, an integrated healthcare system based in the Greater Boston area of Massachusetts, annually serves 1.5 million patients. We established the Mass General Brigham Biobank (MGBB), encompassing 142,238 participants, to unravel the intricate relationships among genomic profiles, environmental context, and disease manifestations within clinical practice. In this study, we highlight the impact of ancestral diversity in the MGBB by employing population genetics, geospatial assessment, and association analyses of rare and common genetic variants. The population structures captured by the genetics mirror the sequential immigration to the Greater Boston area throughout American history, highlighting communities tied to shared genetic and environmental factors. Our investigation underscores the potency of unbiased, large-scale analyses in a healthcare-affiliated biobank, elucidating the dynamic interplay across genetics, immigration, structural geospatial factors, and health outcomes in one of the earliest American sites of European colonization. Cold Spring Harbor Laboratory 2023-10-25 /pmc/articles/PMC10635180/ /pubmed/37961173 http://dx.doi.org/10.1101/2023.10.24.23297096 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Koyama, Satoshi
Wang, Ying
Paruchuri, Kaavya
Uddin, Md Mesbah
Cho, So Mi J.
Urbut, Sarah M.
Haidermota, Sara
Hornsby, Whitney E.
Green, Robert C.
Daly, Mark J.
Neale, Benjamin M.
Ellinor, Patrick T.
Smoller, Jordan W.
Lebo, Matthew S.
Karlson, Elizabeth W.
Martin, Alicia R.
Natarajan, Pradeep
Decoding Genetics, Ancestry, and Geospatial Context for Precision Health
title Decoding Genetics, Ancestry, and Geospatial Context for Precision Health
title_full Decoding Genetics, Ancestry, and Geospatial Context for Precision Health
title_fullStr Decoding Genetics, Ancestry, and Geospatial Context for Precision Health
title_full_unstemmed Decoding Genetics, Ancestry, and Geospatial Context for Precision Health
title_short Decoding Genetics, Ancestry, and Geospatial Context for Precision Health
title_sort decoding genetics, ancestry, and geospatial context for precision health
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635180/
https://www.ncbi.nlm.nih.gov/pubmed/37961173
http://dx.doi.org/10.1101/2023.10.24.23297096
work_keys_str_mv AT koyamasatoshi decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT wangying decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT paruchurikaavya decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT uddinmdmesbah decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT chosomij decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT urbutsarahm decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT haidermotasara decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT hornsbywhitneye decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT greenrobertc decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT dalymarkj decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT nealebenjaminm decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT ellinorpatrickt decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT smollerjordanw decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT lebomatthews decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT karlsonelizabethw decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT martinaliciar decodinggeneticsancestryandgeospatialcontextforprecisionhealth
AT natarajanpradeep decodinggeneticsancestryandgeospatialcontextforprecisionhealth