Cargando…
Machine Learning Enables Single-Score Assessment of MASLD Presence and Severity
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects 30% of the global population but is often underdiagnosed. To fill this diagnostic gap, we developed a digital score reflecting presence and severity of MASLD. We fitted a machine learning model to electronic health records from...
Autores principales: | Chen, Robert, Petrazzini, Ben Omega, Nadkarni, Girish, Rocheleau, Ghislain, Bansal, Meena, Do, Ron |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635186/ https://www.ncbi.nlm.nih.gov/pubmed/37961657 http://dx.doi.org/10.1101/2023.10.24.23297423 |
Ejemplares similares
-
A machine learning model identifies patients in need of autoimmune disease testing using electronic health records
por: Forrest, Iain S., et al.
Publicado: (2023) -
Machine Learning Identifies Plasma Metabolites Associated With Heart Failure in Underrepresented Populations With the
TTR V122I Variant
por: Park, Joshua K., et al.
Publicado: (2023) -
Short-term prediction of coronary artery disease using serum metabolomic patterns
por: Petrazzini, Ben Omega, et al.
Publicado: (2022) -
The Role of Epigenetic Control of Mitochondrial (Dys)Function in MASLD Onset and Progression
por: Caputo, Valerio, et al.
Publicado: (2023) -
Multiscale integrative analyses unveil immune-related diagnostic signature for the progression of MASLD
por: Bai, Jing, et al.
Publicado: (2023)