Cargando…
Quantum-noise-limited optical neural networks operating at a few quanta per activation
A practical limit to energy efficiency in computation is ultimately from noise, with quantum noise [1] as the fundamental floor. Analog physical neural networks [2], which hold promise for improved energy efficiency and speed compared to digital electronic neural networks, are nevertheless typically...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635295/ https://www.ncbi.nlm.nih.gov/pubmed/37961369 http://dx.doi.org/10.21203/rs.3.rs-3318262/v1 |
Sumario: | A practical limit to energy efficiency in computation is ultimately from noise, with quantum noise [1] as the fundamental floor. Analog physical neural networks [2], which hold promise for improved energy efficiency and speed compared to digital electronic neural networks, are nevertheless typically operated in a relatively high-power regime so that the signal-to-noise ratio (SNR) is large (>10). We study optical neural networks [3] operated in the limit where all layers except the last use only a single photon to cause a neuron activation. In this regime, activations are dominated by quantum noise from the fundamentally probabilistic nature of single-photon detection. We show that it is possible to perform accurate machine-learning inference in spite of the extremely high noise (signal-to-noise ratio ~ 1). We experimentally demonstrated MNIST handwritten-digit classification with a test accuracy of 98% using an optical neural network with a hidden layer operating in the single-photon regime; the optical energy used to perform the classification corresponds to 0.008 photons per multiply–accumulate (MAC) operation, which is equivalent to 0.003 attojoules of optical energy per MAC. Our experiment also used >40× fewer photons per inference than previous state-of-the-art low-optical-energy demonstrations [4, 5] to achieve the same accuracy of >90%. Our training approach, which directly models the system’s stochastic behavior, might also prove useful with non-optical ultra-low-power hardware. |
---|