Cargando…

Sexual differences in neuronal and synaptic properties across subregions of the mouse insular cortex

BACKGROUND: The insular cortex (IC) plays a pivotal role in processing interoceptive and emotional Information, offering insights into sex differences in behavior and cognition. The IC comprises two distinct subregions: the anterior insular cortex (alC), that processes emotional and social signals,...

Descripción completa

Detalles Bibliográficos
Autores principales: lezzi, Daniela, Céceres-Rodríguez, Alba, Strauss, Benjamin, Chavis, Pascale, Manzoni, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Journal Experts 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635310/
https://www.ncbi.nlm.nih.gov/pubmed/37961241
http://dx.doi.org/10.21203/rs.3.rs-3431502/v1
Descripción
Sumario:BACKGROUND: The insular cortex (IC) plays a pivotal role in processing interoceptive and emotional Information, offering insights into sex differences in behavior and cognition. The IC comprises two distinct subregions: the anterior insular cortex (alC), that processes emotional and social signals, and the posterior insular cortex (pIC), specialized in interoception and perception of pain. Pyramidal projection neurons within the IC integrate multimodal sensory inputs, influencing behavior and cognition. Despite previous research focusing on neuronal connectivity and transcriptomics, there has been a gap in understanding pyramidal neurons characteristics across subregions and between sexes. METHODS: Adult male and female C57BI/6J mice were sacrificed and tissue containing the IC was collected for ex vivo slice electrophysiology recordings that examined baseline sex differences in synaptic plasticity and transmission within alC and pIC subregions. RESULTS: Clear differences emerged between alC and pIC neurons In both males and females: alC neurons exhibited distinctive features such as larger size, increased hyperpolarizatlon, and a higher rheobase compared to their pIC counterparts. Furthermore, we observed variations in neuronal excitability linked to sex, with male pIC neurons displaying a greater level of excitability than their female counterparts. We also identified region-specific differences in excitatory and inhibitory synaptic activity and the balance between excitation and inhibition in both male and female mice. Adult females demonstrated greater synaptic strength and maximum response in the alC compared to the pIC. Lastly, synaptic long-term potentiation occurred in both subregions in males but was specific to the alC in females. CONCLUSIONS: We conclude that there are sex differences in synaptic plasticity and excitatory transmission in IC subregions, and that distinct properties of IC pyramidal neurons between sexes could contribute to differences in behavior and cognition between males and females.