Cargando…
Augmented drug combination dataset to improve the performance of machine learning models predicting synergistic anticancer effects
Combination therapy has gained popularity in cancer treatment as it enhances the treatment efficacy and overcomes drug resistance. Although machine learning (ML) techniques have become an indispensable tool for discovering new drug combinations, the data on drug combination therapy currently availab...
Autores principales: | Liu, Mengmeng, Srivastava, Gopal, Ramanujam, J., Brylinski, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635365/ https://www.ncbi.nlm.nih.gov/pubmed/37961281 http://dx.doi.org/10.21203/rs.3.rs-3481858/v1 |
Ejemplares similares
-
Pocket2Drug: An Encoder-Decoder Deep Neural Network for the Target-Based Drug Design
por: Shi, Wentao, et al.
Publicado: (2022) -
GraphSite: Ligand Binding Site Classification with Deep Graph Learning
por: Shi, Wentao, et al.
Publicado: (2022) -
An integrated network representation of multiple cancer-specific data for graph-based machine learning
por: Pu, Limeng, et al.
Publicado: (2022) -
Predicting anticancer synergistic drug combinations based on multi-task learning
por: Chen, Danyi, et al.
Publicado: (2023) -
Synergistic drug combinations and machine learning for drug repurposing in chordoma
por: Anderson, Edward, et al.
Publicado: (2020)