Cargando…
Clinical Text Summarization: Adapting Large Language Models Can Outperform Human Experts
Sifting through vast textual data and summarizing key information from electronic health records (EHR) imposes a substantial burden on how clinicians allocate their time. Although large language models (LLMs) have shown immense promise in natural language processing (NLP) tasks, their efficacy on a...
Autores principales: | Van Veen, Dave, Van Uden, Cara, Blankemeier, Louis, Delbrouck, Jean-Benoit, Aali, Asad, Bluethgen, Christian, Pareek, Anuj, Polacin, Malgorzata, Reis, Eduardo Pontes, Seehofnerová, Anna, Rohatgi, Nidhi, Hosamani, Poonam, Collins, William, Ahuja, Neera, Langlotz, Curtis P., Hom, Jason, Gatidis, Sergios, Pauly, John, Chaudhari, Akshay S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635391/ https://www.ncbi.nlm.nih.gov/pubmed/37961377 http://dx.doi.org/10.21203/rs.3.rs-3483777/v1 |
Ejemplares similares
-
An Automated Summarization Assessment Algorithm for Identifying Summarizing Strategies
por: Abdi, Asad, et al.
Publicado: (2016) -
Summarizing biological networks
por: Bhowmick, Sourav S, et al.
Publicado: (2017) -
Deep learning-based age estimation from clinical Computed Tomography image data of the thorax and abdomen in the adult population
por: Kerber, Bjarne, et al.
Publicado: (2023) -
Advances in automatic text summarization
Publicado: (1999) -
From extractive to abstractive summarization
por: Mehta, Parth, et al.
Publicado: (2019)