Cargando…
A simplified similarity-based approach for drug-drug interaction prediction
Drug-drug interactions (DDIs) are a critical component of drug safety surveillance. Laboratory studies aimed at detecting DDIs are typically difficult, expensive, and time-consuming; therefore, developing in-silico methods is critical. Machine learning-based approaches for DDI prediction have been d...
Autores principales: | Shtar, Guy, Solomon, Adir, Mazuz, Eyal, Rokach, Lior, Shapira, Bracha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635435/ https://www.ncbi.nlm.nih.gov/pubmed/37943768 http://dx.doi.org/10.1371/journal.pone.0293629 |
Ejemplares similares
-
Pretrained transformer models for predicting the withdrawal of drugs from the market
por: Mazuz, Eyal, et al.
Publicado: (2023) -
Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures
por: Shtar, Guy, et al.
Publicado: (2019) -
Predicting drug characteristics using biomedical text embedding
por: Shtar, Guy, et al.
Publicado: (2022) -
Molecule generation using transformers and policy gradient reinforcement learning
por: Mazuz, Eyal, et al.
Publicado: (2023) -
CDCDB: A large and continuously updated drug combination database
por: Shtar, Guy, et al.
Publicado: (2022)