Cargando…
Using cellular device location data to estimate visitation to public lands: Comparing device location data to U.S. National Park Service’s visitor use statistics
Understanding human use of public lands is essential for management of natural and cultural resources. However, compiling consistently reliable visitation data across large spatial and temporal scales and across different land managing entities is challenging. Cellular device locations have been dem...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635495/ https://www.ncbi.nlm.nih.gov/pubmed/37943842 http://dx.doi.org/10.1371/journal.pone.0289922 |
_version_ | 1785133008456515584 |
---|---|
author | Tsai, Wei-Lun Merrill, Nathaniel H. Neale, Anne C. Grupper, Madeline |
author_facet | Tsai, Wei-Lun Merrill, Nathaniel H. Neale, Anne C. Grupper, Madeline |
author_sort | Tsai, Wei-Lun |
collection | PubMed |
description | Understanding human use of public lands is essential for management of natural and cultural resources. However, compiling consistently reliable visitation data across large spatial and temporal scales and across different land managing entities is challenging. Cellular device locations have been demonstrated as a source to map human activity patterns and may offer a viable solution to overcome some of the challenges that traditional on-the-ground visitation counts face on public lands. Yet, large-scale applicability of human mobility data derived from cell phone device locations for estimating visitation counts to public lands remains unclear. This study aims to address this knowledge gap by examining the efficacy and limitations of using commercially available cellular data to estimate visitation to public lands. We used the United States’ National Park Service’s (NPS) 2018 and 2019 monthly visitor use counts as a ground-truth and developed visitation models using cellular device location-derived monthly visitor counts as a predictor variable. Other covariates, including park unit type, porousness, and park setting (i.e., urban vs. non-urban, iconic vs. local), were included in the model to examine the impact of park attributes on the relationship between NPS and cell phone-derived counts. We applied Pearson’s correlation and generalized linear mixed model with adjustment of month and accounting for potential clustering by the individual park units to evaluate the reliability of using cell data to estimate visitation counts. Of the 38 parks in our study, 20 parks had a correlation of greater than 0.8 between monthly NPS and cell data counts and 8 parks had a correlation of less than 0.5. Regression modeling showed that the cell data could explain a great amount of the variability (conditional R-squared = 0.96) of NPS counts. However, these relationships varied across parks, with better associations generally observed for iconic parks. While our study increased our confidence in using cell phone data to estimate visitation, we also became aware of some of the limitations and challenges which we present in the Discussion. |
format | Online Article Text |
id | pubmed-10635495 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-106354952023-11-10 Using cellular device location data to estimate visitation to public lands: Comparing device location data to U.S. National Park Service’s visitor use statistics Tsai, Wei-Lun Merrill, Nathaniel H. Neale, Anne C. Grupper, Madeline PLoS One Research Article Understanding human use of public lands is essential for management of natural and cultural resources. However, compiling consistently reliable visitation data across large spatial and temporal scales and across different land managing entities is challenging. Cellular device locations have been demonstrated as a source to map human activity patterns and may offer a viable solution to overcome some of the challenges that traditional on-the-ground visitation counts face on public lands. Yet, large-scale applicability of human mobility data derived from cell phone device locations for estimating visitation counts to public lands remains unclear. This study aims to address this knowledge gap by examining the efficacy and limitations of using commercially available cellular data to estimate visitation to public lands. We used the United States’ National Park Service’s (NPS) 2018 and 2019 monthly visitor use counts as a ground-truth and developed visitation models using cellular device location-derived monthly visitor counts as a predictor variable. Other covariates, including park unit type, porousness, and park setting (i.e., urban vs. non-urban, iconic vs. local), were included in the model to examine the impact of park attributes on the relationship between NPS and cell phone-derived counts. We applied Pearson’s correlation and generalized linear mixed model with adjustment of month and accounting for potential clustering by the individual park units to evaluate the reliability of using cell data to estimate visitation counts. Of the 38 parks in our study, 20 parks had a correlation of greater than 0.8 between monthly NPS and cell data counts and 8 parks had a correlation of less than 0.5. Regression modeling showed that the cell data could explain a great amount of the variability (conditional R-squared = 0.96) of NPS counts. However, these relationships varied across parks, with better associations generally observed for iconic parks. While our study increased our confidence in using cell phone data to estimate visitation, we also became aware of some of the limitations and challenges which we present in the Discussion. Public Library of Science 2023-11-09 /pmc/articles/PMC10635495/ /pubmed/37943842 http://dx.doi.org/10.1371/journal.pone.0289922 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Tsai, Wei-Lun Merrill, Nathaniel H. Neale, Anne C. Grupper, Madeline Using cellular device location data to estimate visitation to public lands: Comparing device location data to U.S. National Park Service’s visitor use statistics |
title | Using cellular device location data to estimate visitation to public lands: Comparing device location data to U.S. National Park Service’s visitor use statistics |
title_full | Using cellular device location data to estimate visitation to public lands: Comparing device location data to U.S. National Park Service’s visitor use statistics |
title_fullStr | Using cellular device location data to estimate visitation to public lands: Comparing device location data to U.S. National Park Service’s visitor use statistics |
title_full_unstemmed | Using cellular device location data to estimate visitation to public lands: Comparing device location data to U.S. National Park Service’s visitor use statistics |
title_short | Using cellular device location data to estimate visitation to public lands: Comparing device location data to U.S. National Park Service’s visitor use statistics |
title_sort | using cellular device location data to estimate visitation to public lands: comparing device location data to u.s. national park service’s visitor use statistics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635495/ https://www.ncbi.nlm.nih.gov/pubmed/37943842 http://dx.doi.org/10.1371/journal.pone.0289922 |
work_keys_str_mv | AT tsaiweilun usingcellulardevicelocationdatatoestimatevisitationtopubliclandscomparingdevicelocationdatatousnationalparkservicesvisitorusestatistics AT merrillnathanielh usingcellulardevicelocationdatatoestimatevisitationtopubliclandscomparingdevicelocationdatatousnationalparkservicesvisitorusestatistics AT nealeannec usingcellulardevicelocationdatatoestimatevisitationtopubliclandscomparingdevicelocationdatatousnationalparkservicesvisitorusestatistics AT gruppermadeline usingcellulardevicelocationdatatoestimatevisitationtopubliclandscomparingdevicelocationdatatousnationalparkservicesvisitorusestatistics |