Cargando…

Stabilization of unstable reentrant atrial tachycardias via fractionated continuous electrical activity ablation (CHAOS study)

BACKGROUND: Unstable reentrant atrial tachycardias (ATs) (i.e., those with frequent circuit modification or conversion to atrial fibrillation) are challenging to ablate. We tested a strategy to achieve arrhythmia stabilization into mappable stable ATs based on the detection and ablation of rotors. M...

Descripción completa

Detalles Bibliográficos
Autores principales: Franco, Eduardo, Granero, Cristina Lozano, Matía, Roberto, Hernández-Madrid, Antonio, Pérez, Inmaculada Sánchez, Zamorano, José Luis, Moreno, Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Via Medica 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635713/
https://www.ncbi.nlm.nih.gov/pubmed/35578756
http://dx.doi.org/10.5603/CJ.a2022.0036
Descripción
Sumario:BACKGROUND: Unstable reentrant atrial tachycardias (ATs) (i.e., those with frequent circuit modification or conversion to atrial fibrillation) are challenging to ablate. We tested a strategy to achieve arrhythmia stabilization into mappable stable ATs based on the detection and ablation of rotors. METHODS: All consecutive patients from May 2017 to December 2019 were included. Mapping was performed using conventional high-density mapping catheters (IntellaMap ORION, PentaRay NAV, or Advisor HD Grid). Rotors were subjectively identified as fractionated continuous (or quasi-continuous) electrograms on 1–2 adjacent bipoles, without dedicated software. In patients without detectable rotors, sites with spatiotemporal dispersion (i.e., all the cycle length comprised within the mapping catheter) plus non-continuous fractionation on single bipoles were targeted. Ablation success was defined as conversion to a stable AT or sinus rhythm. RESULTS: Ninety-seven patients with reentrant ATs were ablated. Of these, 18 (18.6%) presented unstable circuits. Thirteen (72%) patients had detectable rotors (median 2 [1–3] rotors per patient); focal ablation was successful in 12 (92%). In the other 5 patients, 17 sites with spatiotemporal dispersion were identified and targeted. Globally, and excluding 1 patient with spontaneous AT stabilization, ablation success was achieved in 16/17 patients (94.1%). One-year freedom from atrial arrhythmias was similar between patients with unstable and stable ATs (66.7% vs. 65.8%, p = 0.946). CONCLUSIONS: Most unstable reentrant ATs show detectable rotors, identified as sites with single-bipole fractionated quasi-continuous signals, or spatiotemporal dispersion plus non-continuous fractionation. Ablation of these sites is highly effective to stabilize the AT or convert it into sinus rhythm.