Cargando…
Automatic assessment of collaterals physiology in chronic total occlusions by means of artificial intelligence
BACKGROUND: Assessment of collaterals physiology in chronic total occlusions (CTO) currently requires dedicated devices, adds complexity, and increases the cost of the intervention. This study sought to derive collaterals physiology from flow velocity changes (ΔV) in donor arteries, calculated with...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Via Medica
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635726/ https://www.ncbi.nlm.nih.gov/pubmed/36117292 http://dx.doi.org/10.5603/CJ.a2022.0089 |
_version_ | 1785146354443485184 |
---|---|
author | Liu, Lili Ding, Fenghua Shen, Ying Tu, Shengxian Yang, Junqing Zhao, Qiuyang Chu, Miao Shen, Weifeng Zhang, Ruiyan Zimarino, Marco Werner, Gerald S. Gutiérrez-Chico, Juan Luis |
author_facet | Liu, Lili Ding, Fenghua Shen, Ying Tu, Shengxian Yang, Junqing Zhao, Qiuyang Chu, Miao Shen, Weifeng Zhang, Ruiyan Zimarino, Marco Werner, Gerald S. Gutiérrez-Chico, Juan Luis |
author_sort | Liu, Lili |
collection | PubMed |
description | BACKGROUND: Assessment of collaterals physiology in chronic total occlusions (CTO) currently requires dedicated devices, adds complexity, and increases the cost of the intervention. This study sought to derive collaterals physiology from flow velocity changes (ΔV) in donor arteries, calculated with artificial intelligence-aided angiography. METHODS: Angiographies with successful percutaneous coronary intervention (PCI) in 2 centers were retrospectively analyzed. CTO collaterals were angiographically evaluated according to Rentrop and collateral connections (CC) classifications. Flow velocities in the primary and secondary collateral donor arteries (PCDA, SCDA) were automatically computed pre and post PCI, based on a novel deep-learning model to extract the length/time curve of the coronary filling in angiography. Parameters of collaterals physiology, Δcollateral-flow (Δφ(coll)) and Δcollateral-flow-index (ΔCFI), were derived from the ΔV pre-post. RESULTS: The analysis was feasible in 105 out of 130 patients. Flow velocity in the PCDA significantly decreased after CTO-PCI, proportionally to the angiographic collateral grading (Rentrop 1: 0.02 ± 0.01 m/s; Rentrop 2: 0.04 ± 0.01 m/s; Rentrop 3: 0.07 ± 0.02 m/s; p < 0.001; CC0: 0.01 ± 0.01 m/s; CC1: 0.04 ± 0.02 m/s; CC2: 0.06 ± 0.02 m/s; p < 0.001). Δφ(coll) and ΔCFI paralleled ΔV. SCDA also showed a greater reduction in flow velocity if its collateral channels were CC1 vs. CC0 (0.03 ± 0.01 vs. 0.01 ± 0.01 m/s; p < 0.001). For each individual patient, ΔV was more pronounced in the PCDA than in the SCDA. CONCLUSIONS: Automatic assessment of collaterals physiology in CTO is feasible, based on a deep-learning model analyzing the filling of the donor vessels in angiography. The changes in collateral flow with this novel method are quantitatively proportional to the angiographic grading of the collaterals. |
format | Online Article Text |
id | pubmed-10635726 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Via Medica |
record_format | MEDLINE/PubMed |
spelling | pubmed-106357262023-11-15 Automatic assessment of collaterals physiology in chronic total occlusions by means of artificial intelligence Liu, Lili Ding, Fenghua Shen, Ying Tu, Shengxian Yang, Junqing Zhao, Qiuyang Chu, Miao Shen, Weifeng Zhang, Ruiyan Zimarino, Marco Werner, Gerald S. Gutiérrez-Chico, Juan Luis Cardiol J Interventional Cardiology BACKGROUND: Assessment of collaterals physiology in chronic total occlusions (CTO) currently requires dedicated devices, adds complexity, and increases the cost of the intervention. This study sought to derive collaterals physiology from flow velocity changes (ΔV) in donor arteries, calculated with artificial intelligence-aided angiography. METHODS: Angiographies with successful percutaneous coronary intervention (PCI) in 2 centers were retrospectively analyzed. CTO collaterals were angiographically evaluated according to Rentrop and collateral connections (CC) classifications. Flow velocities in the primary and secondary collateral donor arteries (PCDA, SCDA) were automatically computed pre and post PCI, based on a novel deep-learning model to extract the length/time curve of the coronary filling in angiography. Parameters of collaterals physiology, Δcollateral-flow (Δφ(coll)) and Δcollateral-flow-index (ΔCFI), were derived from the ΔV pre-post. RESULTS: The analysis was feasible in 105 out of 130 patients. Flow velocity in the PCDA significantly decreased after CTO-PCI, proportionally to the angiographic collateral grading (Rentrop 1: 0.02 ± 0.01 m/s; Rentrop 2: 0.04 ± 0.01 m/s; Rentrop 3: 0.07 ± 0.02 m/s; p < 0.001; CC0: 0.01 ± 0.01 m/s; CC1: 0.04 ± 0.02 m/s; CC2: 0.06 ± 0.02 m/s; p < 0.001). Δφ(coll) and ΔCFI paralleled ΔV. SCDA also showed a greater reduction in flow velocity if its collateral channels were CC1 vs. CC0 (0.03 ± 0.01 vs. 0.01 ± 0.01 m/s; p < 0.001). For each individual patient, ΔV was more pronounced in the PCDA than in the SCDA. CONCLUSIONS: Automatic assessment of collaterals physiology in CTO is feasible, based on a deep-learning model analyzing the filling of the donor vessels in angiography. The changes in collateral flow with this novel method are quantitatively proportional to the angiographic grading of the collaterals. Via Medica 2023-10-27 /pmc/articles/PMC10635726/ /pubmed/36117292 http://dx.doi.org/10.5603/CJ.a2022.0089 Text en Copyright © 2023 Via Medica https://creativecommons.org/licenses/by-nc-nd/4.0/This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially |
spellingShingle | Interventional Cardiology Liu, Lili Ding, Fenghua Shen, Ying Tu, Shengxian Yang, Junqing Zhao, Qiuyang Chu, Miao Shen, Weifeng Zhang, Ruiyan Zimarino, Marco Werner, Gerald S. Gutiérrez-Chico, Juan Luis Automatic assessment of collaterals physiology in chronic total occlusions by means of artificial intelligence |
title | Automatic assessment of collaterals physiology in chronic total occlusions by means of artificial intelligence |
title_full | Automatic assessment of collaterals physiology in chronic total occlusions by means of artificial intelligence |
title_fullStr | Automatic assessment of collaterals physiology in chronic total occlusions by means of artificial intelligence |
title_full_unstemmed | Automatic assessment of collaterals physiology in chronic total occlusions by means of artificial intelligence |
title_short | Automatic assessment of collaterals physiology in chronic total occlusions by means of artificial intelligence |
title_sort | automatic assessment of collaterals physiology in chronic total occlusions by means of artificial intelligence |
topic | Interventional Cardiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635726/ https://www.ncbi.nlm.nih.gov/pubmed/36117292 http://dx.doi.org/10.5603/CJ.a2022.0089 |
work_keys_str_mv | AT liulili automaticassessmentofcollateralsphysiologyinchronictotalocclusionsbymeansofartificialintelligence AT dingfenghua automaticassessmentofcollateralsphysiologyinchronictotalocclusionsbymeansofartificialintelligence AT shenying automaticassessmentofcollateralsphysiologyinchronictotalocclusionsbymeansofartificialintelligence AT tushengxian automaticassessmentofcollateralsphysiologyinchronictotalocclusionsbymeansofartificialintelligence AT yangjunqing automaticassessmentofcollateralsphysiologyinchronictotalocclusionsbymeansofartificialintelligence AT zhaoqiuyang automaticassessmentofcollateralsphysiologyinchronictotalocclusionsbymeansofartificialintelligence AT chumiao automaticassessmentofcollateralsphysiologyinchronictotalocclusionsbymeansofartificialintelligence AT shenweifeng automaticassessmentofcollateralsphysiologyinchronictotalocclusionsbymeansofartificialintelligence AT zhangruiyan automaticassessmentofcollateralsphysiologyinchronictotalocclusionsbymeansofartificialintelligence AT zimarinomarco automaticassessmentofcollateralsphysiologyinchronictotalocclusionsbymeansofartificialintelligence AT wernergeralds automaticassessmentofcollateralsphysiologyinchronictotalocclusionsbymeansofartificialintelligence AT gutierrezchicojuanluis automaticassessmentofcollateralsphysiologyinchronictotalocclusionsbymeansofartificialintelligence |