Cargando…
Bayesian Disease Mapping to Identify High-Risk Population for Oral Cancer: A Retrospective Spatiotemporal Analysis
OBJECTIVES: Bayesian mapping is an effective spatiotemporal approach to identify high-risk geographic areas for diseases and has not been used to identify oral cancer hotspots in Australia previously. This retrospective disease mapping study was undertaken to identify the oral cancer trends and patt...
Autores principales: | Ramamurthy, Poornima, Sharma, Dileep, Adeoye, John, Choi, Siu-Wai, Thomson, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635753/ https://www.ncbi.nlm.nih.gov/pubmed/37954499 http://dx.doi.org/10.1155/2023/3243373 |
Ejemplares similares
-
Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with application to West Java Province, Indonesia
por: Jaya, I. Gede Nyoman M., et al.
Publicado: (2021) -
Bayesian spatiotemporal modelling for identifying unusual and unstable trends in mammography utilisation
por: Duncan, Earl W, et al.
Publicado: (2016) -
Machine Learning-Based Genome-Wide Salivary DNA Methylation Analysis for Identification of Noninvasive Biomarkers in Oral Cancer Diagnosis
por: Adeoye, John, et al.
Publicado: (2022) -
Identifying spatiotemporal patterns of COVID-19 transmissions and the drivers of the patterns in Toronto: a Bayesian hierarchical spatiotemporal modelling
por: Nazia, Nushrat, et al.
Publicado: (2022) -
Local delivery of hydrogel encapsulated vascular endothelial growth factor for the prevention of medication-related osteonecrosis of the jaw
por: Sharma, Dileep, et al.
Publicado: (2021)