Cargando…
Handling Missing Data in Health Economics and Outcomes Research (HEOR): A Systematic Review and Practical Recommendations
BACKGROUND: Missing data in costs and/or health outcomes and in confounding variables can create bias in the inference of health economics and outcomes research studies, which in turn can lead to inappropriate policies. Most of the literature focuses on handling missing data in randomized controlled...
Autores principales: | Mukherjee, Kumar, Gunsoy, Necdet B., Kristy, Rita M., Cappelleri, Joseph C., Roydhouse, Jessica, Stephenson, Judith J., Vanness, David J., Ramachandran, Sujith, Onwudiwe, Nneka C., Pentakota, Sri Ram, Karcher, Helene, Di Tanna, Gian Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635950/ https://www.ncbi.nlm.nih.gov/pubmed/37490207 http://dx.doi.org/10.1007/s40273-023-01297-0 |
Ejemplares similares
-
Non-traditional Use of HEOR To Identify Host Response Treatments During a Pandemic
por: Mallow, Peter J., et al.
Publicado: (2021) -
Machine Learning for Precision Health Economics and Outcomes Research (P-HEOR): Conceptual Review of Applications and Next Steps
por: Chen, Yixi, et al.
Publicado: (2020) -
Methods to handle missing values and missing individuals
por: Bonander, Carl, et al.
Publicado: (2018) -
The prevention and handling of the missing data
por: Kang, Hyun
Publicado: (2013) -
Modelling the overdiagnosis of breast cancer due to mammography screening in women
aged 40 to 49 in the United Kingdom
por: Gunsoy, Necdet B, et al.
Publicado: (2012)