Cargando…

Assessing impending hazards from summit eruptions: the new probabilistic map for lava flow inundation at Mt. Etna

The development of probabilistic maps associated with lava flow inundation is essential to assess hazard in open vent volcanoes, especially those that have highly urbanized flanks. In this study we present the new lava flow hazard map linked to the summit eruptions of Mt. Etna, which has been develo...

Descripción completa

Detalles Bibliográficos
Autores principales: Zuccarello, Francesco, Bilotta, Giuseppe, Ganci, Gaetana, Proietti, Cristina, Cappello, Annalisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636014/
https://www.ncbi.nlm.nih.gov/pubmed/37945648
http://dx.doi.org/10.1038/s41598-023-46495-0
Descripción
Sumario:The development of probabilistic maps associated with lava flow inundation is essential to assess hazard in open vent volcanoes, especially those that have highly urbanized flanks. In this study we present the new lava flow hazard map linked to the summit eruptions of Mt. Etna, which has been developed using a probabilistic approach that integrates statistical analyses of the volcanological historical data with numerical simulations of lava flows. The statistical analysis of volcanological data (including vent location, duration and lava volumes) about all summit eruptions occurred since 1998 has allowed us both to estimate the spatiotemporal probability of future vent opening and to extract the effusion rate curves for lava flow modelling. Numerical simulations were run using the GPUFLOW model on a 2022 Digital Surface Model derived from optical satellite images. The probabilistic approach has been validated through a back-analysis by calculating the fit between the expected probabilities of inundation and the lava flows actually emplaced during the 2020-2022 period. The obtained map shows a very high probability of inundation of lava flows emitted at vents linked to the South East Crater, according to the observation of the eruptive dynamics in the last decades.