Cargando…
The role of long-term power-law memory in controlling large-scale dynamical networks
Controlling large-scale dynamical networks is crucial to understand and, ultimately, craft the evolution of complex behavior. While broadly speaking we understand how to control Markov dynamical networks, where the current state is only a function of its previous state, we lack a general understandi...
Autores principales: | Reed, Emily A., Ramos, Guilherme, Bogdan, Paul, Pequito, Sérgio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636034/ https://www.ncbi.nlm.nih.gov/pubmed/37945616 http://dx.doi.org/10.1038/s41598-023-46349-9 |
Ejemplares similares
-
On the effects of memory and topology on the controllability of complex dynamical networks
por: Kyriakis, Panagiotis, et al.
Publicado: (2020) -
Generating complex networks with time-to-control communities
por: Ramos, Guilherme, et al.
Publicado: (2020) -
Editorial: Inference, Causality and Control in Networks of Dynamical Systems: Data Science and Modeling Perspectives to Network Physiology With Implications for Artificial Intelligence
por: Bogdan, Paul, et al.
Publicado: (2022) -
Power-law scaling of calling dynamics in zebra finches
por: Ma, Shouwen, et al.
Publicado: (2017) -
Model-based stationarity filtering of long-term memory data applied to resting-state blood-oxygen-level-dependent signal
por: Bansal, Ishita Rai, et al.
Publicado: (2022)