Cargando…
Antiproliferative effects of D-allose associated with reduced cell division frequency in glioblastoma
Recent studies have shown that D-allose, a rare sugar, elicits antitumor effects on different types of solid cancers, such as hepatocellular carcinoma, non-small-cell lung cancer, and squamous cell carcinoma of the head and neck. In this study, we examined the effects of D-allose on the proliferatio...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636159/ https://www.ncbi.nlm.nih.gov/pubmed/37945736 http://dx.doi.org/10.1038/s41598-023-46796-4 |
Sumario: | Recent studies have shown that D-allose, a rare sugar, elicits antitumor effects on different types of solid cancers, such as hepatocellular carcinoma, non-small-cell lung cancer, and squamous cell carcinoma of the head and neck. In this study, we examined the effects of D-allose on the proliferation of human glioblastoma (GBM) cell lines (i.e., U251MG and U87MG) in vitro and in vivo and the underlying mechanisms. D-allose treatment inhibited the proliferation of U251MG and U87MG cells in a dose-dependent manner (3–50 mM). However, D-allose treatment did not affect cell cycles or apoptosis in these cells but significantly decreased the cell division frequency in both GBM cell lines. In a subcutaneous U87MG cell xenograft model, intraperitoneal injection of D-allose (100 mg/kg/day) significantly reduced the tumor volume in 28 days. These data indicate that D-allose-induced reduction in cell proliferation is associated with a subsequent decrease in the number of cell divisions, independent of cell-cycle arrest and apoptosis. Thus, D-allose could be an attractive additive to therapeutic strategies for GBM. |
---|