Cargando…
Explainable Multilayer Graph Neural Network for cancer gene prediction
MOTIVATION: The identification of cancer genes is a critical yet challenging problem in cancer genomics research. Existing computational methods, including deep graph neural networks, fail to exploit the multilayered gene–gene interactions or provide limited explanations for their predictions. These...
Autores principales: | Chatzianastasis, Michail, Vazirgiannis, Michalis, Zhang, Zijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636280/ https://www.ncbi.nlm.nih.gov/pubmed/37862225 http://dx.doi.org/10.1093/bioinformatics/btad643 |
Ejemplares similares
-
XGDAG: explainable gene–disease associations via graph neural networks
por: Mastropietro, Andrea, et al.
Publicado: (2023) -
Evaluating explainability for graph neural networks
por: Agarwal, Chirag, et al.
Publicado: (2023) -
MLNGCF: circRNA–disease associations prediction with multilayer attention neural graph-based collaborative filtering
por: Wu, Qunzhuo, et al.
Publicado: (2023) -
Noise reduction in protein-protein interaction graphs by the implementation of a novel weighting scheme
por: Kritikos, George D, et al.
Publicado: (2011) -
Synthetic electronic health records generated with variational graph autoencoders
por: Nikolentzos, Giannis, et al.
Publicado: (2023)