Cargando…
Automated exploitation of deep learning for cancer patient stratification across multiple types
MOTIVATION: Recent frameworks based on deep learning have been developed to identify cancer subtypes from high-throughput gene expression profiles. Unfortunately, the performance of deep learning is highly dependent on its neural network architectures which are often hand-crafted with expertise in d...
Autores principales: | Sun, Pingping, Fan, Shijie, Li, Shaochuan, Zhao, Yingwei, Lu, Chang, Wong, Ka-Chun, Li, Xiangtao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636288/ https://www.ncbi.nlm.nih.gov/pubmed/37934154 http://dx.doi.org/10.1093/bioinformatics/btad654 |
Ejemplares similares
-
Colorectal cancer subtype identification from differential gene expression levels using minimalist deep learning
por: Li, Shaochuan, et al.
Publicado: (2022) -
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering
por: Wang, Yunhe, et al.
Publicado: (2023) -
Learning the protein language of proteome-wide protein-protein binding sites via explainable ensemble deep learning
por: Hou, Zilong, et al.
Publicado: (2023) -
Uncovering the key dimensions of high-throughput biomolecular data using deep learning
por: Zhang, Shixiong, et al.
Publicado: (2020) -
Natural computing for unsupervised learning
por: Li, Xiangtao, et al.
Publicado: (2018)