Cargando…

CT image-based biomarkers acquired by AI-based algorithms for the opportunistic prediction of falls

OBJECTIVE: Evaluate whether biomarkers measured by automated artificial intelligence (AI)-based algorithms are suggestive of future fall risk. METHODS: In this retrospective age- and sex-matched case–control study, 9029 total patients underwent initial abdominal CT for a variety of indications over...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Daniel, Binkley, Neil C, Perez, Alberto, Garrett, John W, Zea, Ryan, Summers, Ronald M, Pickhardt, Perry J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The British Institute of Radiology. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636337/
https://www.ncbi.nlm.nih.gov/pubmed/37953870
http://dx.doi.org/10.1259/bjro.20230014
_version_ 1785133186290810880
author Liu, Daniel
Binkley, Neil C
Perez, Alberto
Garrett, John W
Zea, Ryan
Summers, Ronald M
Pickhardt, Perry J
author_facet Liu, Daniel
Binkley, Neil C
Perez, Alberto
Garrett, John W
Zea, Ryan
Summers, Ronald M
Pickhardt, Perry J
author_sort Liu, Daniel
collection PubMed
description OBJECTIVE: Evaluate whether biomarkers measured by automated artificial intelligence (AI)-based algorithms are suggestive of future fall risk. METHODS: In this retrospective age- and sex-matched case–control study, 9029 total patients underwent initial abdominal CT for a variety of indications over a 20-year interval at one institution. 3535 case patients (mean age at initial CT, 66.5 ± 9.6 years; 63.4% female) who went on to fall (mean interval to fall, 6.5 years) and 5494 controls (mean age at initial CT, 66.7 ± 9.8 years; 63.4% females; mean follow-up interval, 6.6 years) were included. Falls were identified by electronic health record review. Validated and fully automated quantitative CT algorithms for skeletal muscle, adipose tissue, and trabecular bone attenuation at the level of L1 were applied to all scans. Uni- and multivariate assessment included hazard ratios (HRs) and area under the receiver operating characteristic (AUROC) curve. RESULTS: Fall HRs (with 95% CI) for low muscle Hounsfield unit, high total adipose area, and low bone Hounsfield unit were 1.82 (1.65–2.00), 1.31 (1.19–1.44) and 1.91 (1.74–2.11), respectively, and the 10-year AUROC values for predicting falls were 0.619, 0.556, and 0.639, respectively. Combining all these CT biomarkers further improved the predictive value, including 10-year AUROC of 0.657. CONCLUSION: Automated abdominal CT-based opportunistic measures of muscle, fat, and bone offer a novel approach to risk stratification for future falls, potentially by identifying patients with osteosarcopenic obesity. ADVANCES IN KNOWLEDGE: There are few well-established clinical tools to predict falls. We use novel AI-based body composition algorithms to leverage incidental CT data to help determine a patient’s future fall risk.
format Online
Article
Text
id pubmed-10636337
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The British Institute of Radiology.
record_format MEDLINE/PubMed
spelling pubmed-106363372023-11-11 CT image-based biomarkers acquired by AI-based algorithms for the opportunistic prediction of falls Liu, Daniel Binkley, Neil C Perez, Alberto Garrett, John W Zea, Ryan Summers, Ronald M Pickhardt, Perry J BJR Open Original Research OBJECTIVE: Evaluate whether biomarkers measured by automated artificial intelligence (AI)-based algorithms are suggestive of future fall risk. METHODS: In this retrospective age- and sex-matched case–control study, 9029 total patients underwent initial abdominal CT for a variety of indications over a 20-year interval at one institution. 3535 case patients (mean age at initial CT, 66.5 ± 9.6 years; 63.4% female) who went on to fall (mean interval to fall, 6.5 years) and 5494 controls (mean age at initial CT, 66.7 ± 9.8 years; 63.4% females; mean follow-up interval, 6.6 years) were included. Falls were identified by electronic health record review. Validated and fully automated quantitative CT algorithms for skeletal muscle, adipose tissue, and trabecular bone attenuation at the level of L1 were applied to all scans. Uni- and multivariate assessment included hazard ratios (HRs) and area under the receiver operating characteristic (AUROC) curve. RESULTS: Fall HRs (with 95% CI) for low muscle Hounsfield unit, high total adipose area, and low bone Hounsfield unit were 1.82 (1.65–2.00), 1.31 (1.19–1.44) and 1.91 (1.74–2.11), respectively, and the 10-year AUROC values for predicting falls were 0.619, 0.556, and 0.639, respectively. Combining all these CT biomarkers further improved the predictive value, including 10-year AUROC of 0.657. CONCLUSION: Automated abdominal CT-based opportunistic measures of muscle, fat, and bone offer a novel approach to risk stratification for future falls, potentially by identifying patients with osteosarcopenic obesity. ADVANCES IN KNOWLEDGE: There are few well-established clinical tools to predict falls. We use novel AI-based body composition algorithms to leverage incidental CT data to help determine a patient’s future fall risk. The British Institute of Radiology. 2023-05-16 /pmc/articles/PMC10636337/ /pubmed/37953870 http://dx.doi.org/10.1259/bjro.20230014 Text en © 2023 The Authors. Published by the British Institute of Radiology https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
spellingShingle Original Research
Liu, Daniel
Binkley, Neil C
Perez, Alberto
Garrett, John W
Zea, Ryan
Summers, Ronald M
Pickhardt, Perry J
CT image-based biomarkers acquired by AI-based algorithms for the opportunistic prediction of falls
title CT image-based biomarkers acquired by AI-based algorithms for the opportunistic prediction of falls
title_full CT image-based biomarkers acquired by AI-based algorithms for the opportunistic prediction of falls
title_fullStr CT image-based biomarkers acquired by AI-based algorithms for the opportunistic prediction of falls
title_full_unstemmed CT image-based biomarkers acquired by AI-based algorithms for the opportunistic prediction of falls
title_short CT image-based biomarkers acquired by AI-based algorithms for the opportunistic prediction of falls
title_sort ct image-based biomarkers acquired by ai-based algorithms for the opportunistic prediction of falls
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636337/
https://www.ncbi.nlm.nih.gov/pubmed/37953870
http://dx.doi.org/10.1259/bjro.20230014
work_keys_str_mv AT liudaniel ctimagebasedbiomarkersacquiredbyaibasedalgorithmsfortheopportunisticpredictionoffalls
AT binkleyneilc ctimagebasedbiomarkersacquiredbyaibasedalgorithmsfortheopportunisticpredictionoffalls
AT perezalberto ctimagebasedbiomarkersacquiredbyaibasedalgorithmsfortheopportunisticpredictionoffalls
AT garrettjohnw ctimagebasedbiomarkersacquiredbyaibasedalgorithmsfortheopportunisticpredictionoffalls
AT zearyan ctimagebasedbiomarkersacquiredbyaibasedalgorithmsfortheopportunisticpredictionoffalls
AT summersronaldm ctimagebasedbiomarkersacquiredbyaibasedalgorithmsfortheopportunisticpredictionoffalls
AT pickhardtperryj ctimagebasedbiomarkersacquiredbyaibasedalgorithmsfortheopportunisticpredictionoffalls