Cargando…
CT image-based biomarkers acquired by AI-based algorithms for the opportunistic prediction of falls
OBJECTIVE: Evaluate whether biomarkers measured by automated artificial intelligence (AI)-based algorithms are suggestive of future fall risk. METHODS: In this retrospective age- and sex-matched case–control study, 9029 total patients underwent initial abdominal CT for a variety of indications over...
Autores principales: | Liu, Daniel, Binkley, Neil C, Perez, Alberto, Garrett, John W, Zea, Ryan, Summers, Ronald M, Pickhardt, Perry J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636337/ https://www.ncbi.nlm.nih.gov/pubmed/37953870 http://dx.doi.org/10.1259/bjro.20230014 |
Ejemplares similares
-
Automated CT-Based Body Composition Analysis: A Golden Opportunity
por: Pickhardt, Perry J., et al.
Publicado: (2021) -
Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks
por: Sandfort, Veit, et al.
Publicado: (2019) -
Associations among Pericolonic Fat, Visceral Fat, and Colorectal Polyps on CT Colonography
por: Liu, Jiamin, et al.
Publicado: (2014) -
Inertial Data-Based AI Approaches for ADL and Fall Recognition
por: Martins, Luís M., et al.
Publicado: (2022) -
Diagnostic Accuracy of AI for Opportunistic Screening of Abdominal Aortic Aneurysm in CT: A Systematic Review and Narrative Synthesis
por: Kodenko, Maria R., et al.
Publicado: (2022)