Cargando…
The effect of spatial resolution on deep learning classification of lung cancer histopathology
OBJECTIVE: The microscopic analysis of biopsied lung nodules represents the gold-standard for definitive diagnosis of lung cancer. Deep learning has achieved pathologist-level classification of non-small cell lung cancer histopathology images at high resolutions (0.5–2 µm/px), and recent studies hav...
Autores principales: | Wiebe, Mitchell, Haston, Christina, Lamey, Michael, Narayan, Apurva, Rajapakshe, Rasika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636338/ https://www.ncbi.nlm.nih.gov/pubmed/37953867 http://dx.doi.org/10.1259/bjro.20230008 |
Ejemplares similares
-
Impact of a deep learning assistant on the histopathologic classification of liver cancer
por: Kiani, Amirhossein, et al.
Publicado: (2020) -
Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours
por: Iizuka, Osamu, et al.
Publicado: (2020) -
Deep Learning for the Classification of Non-Hodgkin Lymphoma on Histopathological Images
por: Steinbuss, Georg, et al.
Publicado: (2021) -
Automated Deep Learning-Based Classification of Wilms Tumor Histopathology
por: van der Kamp, Ananda, et al.
Publicado: (2023) -
Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models
por: Hameed, Zabit, et al.
Publicado: (2020)