Cargando…

Textural features of the frontal white matter could be used to discriminate amnestic mild cognitive impairment patients from the normal population

OBJECTIVE: We aim to develop a radiomics model based on 3‐dimensional (3D)‐T1WI images to discriminate amnestic mild cognitive impairment (aMCI) patients from the normal population by measuring changes in frontal white matter. METHODS: In this study, 126 patients with aMCI and 174 normal controls (N...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Wei, Mu, Ronghua, Liu, Fuzhen, Qin, Xiaoyan, Li, Xin, Yang, Peng, Liang, Yahui, Zhu, Xiqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636424/
https://www.ncbi.nlm.nih.gov/pubmed/37587901
http://dx.doi.org/10.1002/brb3.3222
Descripción
Sumario:OBJECTIVE: We aim to develop a radiomics model based on 3‐dimensional (3D)‐T1WI images to discriminate amnestic mild cognitive impairment (aMCI) patients from the normal population by measuring changes in frontal white matter. METHODS: In this study, 126 patients with aMCI and 174 normal controls (NC) were recruited from the local community. All subjects underwent routine magnetic resonance imaging examination (including 3D‐T1WI ). Participants were randomly divided into a training set (n = 242, aMCI:102, NC:140) and a testing set (n = 58, aMCI:24, NC:34). Texture features of the frontal lobe were extracted from 3D‐T1WI images. The least absolute shrinkage and selection operator (LASSO) was used to reduce feature dimensions and develop a radiomics signature model. Diagnostic performance was assessed in the training and testing sets using the receiver operating characteristic (ROC) curve analysis. The area under the ROC curve (AUC), sensitivity, and specificity were also calculated. The efficacy of the radiomics model in discriminating aMCI patients from the normal population was assessed by decision curve analysis (DCA). RESULTS: A total of 108 frontal lobe texture features were extracted from 3D‐T1WI images. LASSO selected 58 radiomic features for the final model, including log‐sigma (n = 18), original (n = 8), and wavelet (n = 32) features. The performance of radiomic features extracted from 3D T1 imaging for distinguishing aMCI patients from controls was: in the training set, AUC was 1.00, and the accuracy, sensitivity, and specificity were 100%, 98%, and 100%, respectively. In the testing set, AUC was 0.82 (95% CI:0.69–0.95), and the accuracy, sensitivity, and specificity were 69%, 92%, and 55%, respectively. The DCA demonstrated that the model had favorable clinical predictive value. CONCLUSIONS: Textural features of white matter in the frontal lobe showed potential for distinguishing aMCI from the normal population, which could be a surrogate protocol to aid aMCI screening in clinical setting.