Cargando…

Textural features of the frontal white matter could be used to discriminate amnestic mild cognitive impairment patients from the normal population

OBJECTIVE: We aim to develop a radiomics model based on 3‐dimensional (3D)‐T1WI images to discriminate amnestic mild cognitive impairment (aMCI) patients from the normal population by measuring changes in frontal white matter. METHODS: In this study, 126 patients with aMCI and 174 normal controls (N...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Wei, Mu, Ronghua, Liu, Fuzhen, Qin, Xiaoyan, Li, Xin, Yang, Peng, Liang, Yahui, Zhu, Xiqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636424/
https://www.ncbi.nlm.nih.gov/pubmed/37587901
http://dx.doi.org/10.1002/brb3.3222
_version_ 1785146428095463424
author Zheng, Wei
Mu, Ronghua
Liu, Fuzhen
Qin, Xiaoyan
Li, Xin
Yang, Peng
Li, Xin
Liang, Yahui
Zhu, Xiqi
author_facet Zheng, Wei
Mu, Ronghua
Liu, Fuzhen
Qin, Xiaoyan
Li, Xin
Yang, Peng
Li, Xin
Liang, Yahui
Zhu, Xiqi
author_sort Zheng, Wei
collection PubMed
description OBJECTIVE: We aim to develop a radiomics model based on 3‐dimensional (3D)‐T1WI images to discriminate amnestic mild cognitive impairment (aMCI) patients from the normal population by measuring changes in frontal white matter. METHODS: In this study, 126 patients with aMCI and 174 normal controls (NC) were recruited from the local community. All subjects underwent routine magnetic resonance imaging examination (including 3D‐T1WI ). Participants were randomly divided into a training set (n = 242, aMCI:102, NC:140) and a testing set (n = 58, aMCI:24, NC:34). Texture features of the frontal lobe were extracted from 3D‐T1WI images. The least absolute shrinkage and selection operator (LASSO) was used to reduce feature dimensions and develop a radiomics signature model. Diagnostic performance was assessed in the training and testing sets using the receiver operating characteristic (ROC) curve analysis. The area under the ROC curve (AUC), sensitivity, and specificity were also calculated. The efficacy of the radiomics model in discriminating aMCI patients from the normal population was assessed by decision curve analysis (DCA). RESULTS: A total of 108 frontal lobe texture features were extracted from 3D‐T1WI images. LASSO selected 58 radiomic features for the final model, including log‐sigma (n = 18), original (n = 8), and wavelet (n = 32) features. The performance of radiomic features extracted from 3D T1 imaging for distinguishing aMCI patients from controls was: in the training set, AUC was 1.00, and the accuracy, sensitivity, and specificity were 100%, 98%, and 100%, respectively. In the testing set, AUC was 0.82 (95% CI:0.69–0.95), and the accuracy, sensitivity, and specificity were 69%, 92%, and 55%, respectively. The DCA demonstrated that the model had favorable clinical predictive value. CONCLUSIONS: Textural features of white matter in the frontal lobe showed potential for distinguishing aMCI from the normal population, which could be a surrogate protocol to aid aMCI screening in clinical setting.
format Online
Article
Text
id pubmed-10636424
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-106364242023-11-15 Textural features of the frontal white matter could be used to discriminate amnestic mild cognitive impairment patients from the normal population Zheng, Wei Mu, Ronghua Liu, Fuzhen Qin, Xiaoyan Li, Xin Yang, Peng Li, Xin Liang, Yahui Zhu, Xiqi Brain Behav Original Article OBJECTIVE: We aim to develop a radiomics model based on 3‐dimensional (3D)‐T1WI images to discriminate amnestic mild cognitive impairment (aMCI) patients from the normal population by measuring changes in frontal white matter. METHODS: In this study, 126 patients with aMCI and 174 normal controls (NC) were recruited from the local community. All subjects underwent routine magnetic resonance imaging examination (including 3D‐T1WI ). Participants were randomly divided into a training set (n = 242, aMCI:102, NC:140) and a testing set (n = 58, aMCI:24, NC:34). Texture features of the frontal lobe were extracted from 3D‐T1WI images. The least absolute shrinkage and selection operator (LASSO) was used to reduce feature dimensions and develop a radiomics signature model. Diagnostic performance was assessed in the training and testing sets using the receiver operating characteristic (ROC) curve analysis. The area under the ROC curve (AUC), sensitivity, and specificity were also calculated. The efficacy of the radiomics model in discriminating aMCI patients from the normal population was assessed by decision curve analysis (DCA). RESULTS: A total of 108 frontal lobe texture features were extracted from 3D‐T1WI images. LASSO selected 58 radiomic features for the final model, including log‐sigma (n = 18), original (n = 8), and wavelet (n = 32) features. The performance of radiomic features extracted from 3D T1 imaging for distinguishing aMCI patients from controls was: in the training set, AUC was 1.00, and the accuracy, sensitivity, and specificity were 100%, 98%, and 100%, respectively. In the testing set, AUC was 0.82 (95% CI:0.69–0.95), and the accuracy, sensitivity, and specificity were 69%, 92%, and 55%, respectively. The DCA demonstrated that the model had favorable clinical predictive value. CONCLUSIONS: Textural features of white matter in the frontal lobe showed potential for distinguishing aMCI from the normal population, which could be a surrogate protocol to aid aMCI screening in clinical setting. John Wiley and Sons Inc. 2023-08-17 /pmc/articles/PMC10636424/ /pubmed/37587901 http://dx.doi.org/10.1002/brb3.3222 Text en © 2023 The Authors. Brain and Behavior published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Zheng, Wei
Mu, Ronghua
Liu, Fuzhen
Qin, Xiaoyan
Li, Xin
Yang, Peng
Li, Xin
Liang, Yahui
Zhu, Xiqi
Textural features of the frontal white matter could be used to discriminate amnestic mild cognitive impairment patients from the normal population
title Textural features of the frontal white matter could be used to discriminate amnestic mild cognitive impairment patients from the normal population
title_full Textural features of the frontal white matter could be used to discriminate amnestic mild cognitive impairment patients from the normal population
title_fullStr Textural features of the frontal white matter could be used to discriminate amnestic mild cognitive impairment patients from the normal population
title_full_unstemmed Textural features of the frontal white matter could be used to discriminate amnestic mild cognitive impairment patients from the normal population
title_short Textural features of the frontal white matter could be used to discriminate amnestic mild cognitive impairment patients from the normal population
title_sort textural features of the frontal white matter could be used to discriminate amnestic mild cognitive impairment patients from the normal population
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636424/
https://www.ncbi.nlm.nih.gov/pubmed/37587901
http://dx.doi.org/10.1002/brb3.3222
work_keys_str_mv AT zhengwei texturalfeaturesofthefrontalwhitemattercouldbeusedtodiscriminateamnesticmildcognitiveimpairmentpatientsfromthenormalpopulation
AT muronghua texturalfeaturesofthefrontalwhitemattercouldbeusedtodiscriminateamnesticmildcognitiveimpairmentpatientsfromthenormalpopulation
AT liufuzhen texturalfeaturesofthefrontalwhitemattercouldbeusedtodiscriminateamnesticmildcognitiveimpairmentpatientsfromthenormalpopulation
AT qinxiaoyan texturalfeaturesofthefrontalwhitemattercouldbeusedtodiscriminateamnesticmildcognitiveimpairmentpatientsfromthenormalpopulation
AT lixin texturalfeaturesofthefrontalwhitemattercouldbeusedtodiscriminateamnesticmildcognitiveimpairmentpatientsfromthenormalpopulation
AT yangpeng texturalfeaturesofthefrontalwhitemattercouldbeusedtodiscriminateamnesticmildcognitiveimpairmentpatientsfromthenormalpopulation
AT lixin texturalfeaturesofthefrontalwhitemattercouldbeusedtodiscriminateamnesticmildcognitiveimpairmentpatientsfromthenormalpopulation
AT liangyahui texturalfeaturesofthefrontalwhitemattercouldbeusedtodiscriminateamnesticmildcognitiveimpairmentpatientsfromthenormalpopulation
AT zhuxiqi texturalfeaturesofthefrontalwhitemattercouldbeusedtodiscriminateamnesticmildcognitiveimpairmentpatientsfromthenormalpopulation