Cargando…
Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study
BACKGROUND: Machine learning (ML) methods have shown great potential in predicting colorectal cancer (CRC) survival. However, the ML models introduced thus far have mainly focused on binary outcomes and have not considered the time-to-event nature of this type of modeling. OBJECTIVE: This study aims...
Autores principales: | Yang, Xulin, Qiu, Hang, Wang, Liya, Wang, Xiaodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636616/ https://www.ncbi.nlm.nih.gov/pubmed/37883174 http://dx.doi.org/10.2196/44417 |
Ejemplares similares
-
Comorbidity Patterns in Patients Newly Diagnosed With Colorectal Cancer: Network-Based Study
por: Qiu, Hang, et al.
Publicado: (2023) -
The Prediction of Preterm Birth Using Time-Series Technology-Based Machine Learning: Retrospective Cohort Study
por: Zhang, Yichao, et al.
Publicado: (2022) -
Network analytics and machine learning for predicting length of stay in elderly patients with chronic diseases at point of admission
por: Hu, Zhixu, et al.
Publicado: (2022) -
Prediction of Maternal Hemorrhage Using Machine Learning: Retrospective Cohort Study
por: Westcott, Jill M, et al.
Publicado: (2022) -
Machine learning for predicting survival of colorectal cancer patients
por: Buk Cardoso, Lucas, et al.
Publicado: (2023)