Cargando…

Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator

[Image: see text] Flexible and green energy storage devices have a wide range of applications in prospective electronics and connected devices. In this study, a new eco-friendly bilayer separator and primary and secondary paper supercapacitors based on manganese dioxide (MnO(2))/carbon black (CB) ar...

Descripción completa

Detalles Bibliográficos
Autores principales: Beg, Mustehsan, Alcock, Keith M., Titus Mavelil, Achu, O’Rourke, Dominic, Sun, Dongyang, Goh, Keng, Manjakkal, Libu, Yu, Hongnian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636709/
https://www.ncbi.nlm.nih.gov/pubmed/37897417
http://dx.doi.org/10.1021/acsami.3c11005
_version_ 1785146461416062976
author Beg, Mustehsan
Alcock, Keith M.
Titus Mavelil, Achu
O’Rourke, Dominic
Sun, Dongyang
Goh, Keng
Manjakkal, Libu
Yu, Hongnian
author_facet Beg, Mustehsan
Alcock, Keith M.
Titus Mavelil, Achu
O’Rourke, Dominic
Sun, Dongyang
Goh, Keng
Manjakkal, Libu
Yu, Hongnian
author_sort Beg, Mustehsan
collection PubMed
description [Image: see text] Flexible and green energy storage devices have a wide range of applications in prospective electronics and connected devices. In this study, a new eco-friendly bilayer separator and primary and secondary paper supercapacitors based on manganese dioxide (MnO(2))/carbon black (CB) are developed. The bilayer separator is prepared via a two-step fabrication process involving freeze–thawing and nonsolvent-induced phase separation. The prepared bilayer separator exhibits superior porosity of 46%, wettability of 46.5°, and electrolyte uptake of 194% when compared with a Celgard 2320 trilayer separator (39%, 55.58°, and 110%). Moreover, lower bulk resistance yields a higher ionic conductivity of 0.52 mS cm(–1) in comparison to 0.22 mS cm(–1) for the Celgard separator. Furthermore, the bilayer separator exhibits improved mean efficiency of 0.44% and higher specific discharge capacitance of 13.53%. The anodic and cathodic electrodes are coated on a paper substrate using MnO(2)/CB and zinc metal-loaded CB composites. The paper supercapacitor demonstrates a high specific capacitance of 34.1 mF cm(–2) and energy and power density of 1.70 μWh cm(–2) and 204.8 μW cm(–2) at 500 μA, respectively. In summary, the concept of an eco-friendly bilayer cellulose separator with paper-based supercapacitors offers an environmentally friendly alternative to traditional energy storage devices.
format Online
Article
Text
id pubmed-10636709
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-106367092023-11-15 Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator Beg, Mustehsan Alcock, Keith M. Titus Mavelil, Achu O’Rourke, Dominic Sun, Dongyang Goh, Keng Manjakkal, Libu Yu, Hongnian ACS Appl Mater Interfaces [Image: see text] Flexible and green energy storage devices have a wide range of applications in prospective electronics and connected devices. In this study, a new eco-friendly bilayer separator and primary and secondary paper supercapacitors based on manganese dioxide (MnO(2))/carbon black (CB) are developed. The bilayer separator is prepared via a two-step fabrication process involving freeze–thawing and nonsolvent-induced phase separation. The prepared bilayer separator exhibits superior porosity of 46%, wettability of 46.5°, and electrolyte uptake of 194% when compared with a Celgard 2320 trilayer separator (39%, 55.58°, and 110%). Moreover, lower bulk resistance yields a higher ionic conductivity of 0.52 mS cm(–1) in comparison to 0.22 mS cm(–1) for the Celgard separator. Furthermore, the bilayer separator exhibits improved mean efficiency of 0.44% and higher specific discharge capacitance of 13.53%. The anodic and cathodic electrodes are coated on a paper substrate using MnO(2)/CB and zinc metal-loaded CB composites. The paper supercapacitor demonstrates a high specific capacitance of 34.1 mF cm(–2) and energy and power density of 1.70 μWh cm(–2) and 204.8 μW cm(–2) at 500 μA, respectively. In summary, the concept of an eco-friendly bilayer cellulose separator with paper-based supercapacitors offers an environmentally friendly alternative to traditional energy storage devices. American Chemical Society 2023-10-28 /pmc/articles/PMC10636709/ /pubmed/37897417 http://dx.doi.org/10.1021/acsami.3c11005 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Beg, Mustehsan
Alcock, Keith M.
Titus Mavelil, Achu
O’Rourke, Dominic
Sun, Dongyang
Goh, Keng
Manjakkal, Libu
Yu, Hongnian
Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator
title Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator
title_full Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator
title_fullStr Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator
title_full_unstemmed Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator
title_short Paper Supercapacitor Developed Using a Manganese Dioxide/Carbon Black Composite and a Water Hyacinth Cellulose Nanofiber-Based Bilayer Separator
title_sort paper supercapacitor developed using a manganese dioxide/carbon black composite and a water hyacinth cellulose nanofiber-based bilayer separator
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636709/
https://www.ncbi.nlm.nih.gov/pubmed/37897417
http://dx.doi.org/10.1021/acsami.3c11005
work_keys_str_mv AT begmustehsan papersupercapacitordevelopedusingamanganesedioxidecarbonblackcompositeandawaterhyacinthcellulosenanofiberbasedbilayerseparator
AT alcockkeithm papersupercapacitordevelopedusingamanganesedioxidecarbonblackcompositeandawaterhyacinthcellulosenanofiberbasedbilayerseparator
AT titusmavelilachu papersupercapacitordevelopedusingamanganesedioxidecarbonblackcompositeandawaterhyacinthcellulosenanofiberbasedbilayerseparator
AT orourkedominic papersupercapacitordevelopedusingamanganesedioxidecarbonblackcompositeandawaterhyacinthcellulosenanofiberbasedbilayerseparator
AT sundongyang papersupercapacitordevelopedusingamanganesedioxidecarbonblackcompositeandawaterhyacinthcellulosenanofiberbasedbilayerseparator
AT gohkeng papersupercapacitordevelopedusingamanganesedioxidecarbonblackcompositeandawaterhyacinthcellulosenanofiberbasedbilayerseparator
AT manjakkallibu papersupercapacitordevelopedusingamanganesedioxidecarbonblackcompositeandawaterhyacinthcellulosenanofiberbasedbilayerseparator
AT yuhongnian papersupercapacitordevelopedusingamanganesedioxidecarbonblackcompositeandawaterhyacinthcellulosenanofiberbasedbilayerseparator