Cargando…

Surface-Modified Piezoelectric Copolymer Poly(vinylidene fluoride–trifluoroethylene) Supporting Physiological Extracellular Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical Stimulation

[Image: see text] There is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such...

Descripción completa

Detalles Bibliográficos
Autores principales: Donnelly, Hannah, Sprott, Mark R., Poudel, Anup, Campsie, Paul, Childs, Peter, Reid, Stuart, Salmerón-Sánchez, Manuel, Biggs, Manus, Dalby, Matthew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636716/
https://www.ncbi.nlm.nih.gov/pubmed/37718477
http://dx.doi.org/10.1021/acsami.3c05128
_version_ 1785146462337761280
author Donnelly, Hannah
Sprott, Mark R.
Poudel, Anup
Campsie, Paul
Childs, Peter
Reid, Stuart
Salmerón-Sánchez, Manuel
Biggs, Manus
Dalby, Matthew J.
author_facet Donnelly, Hannah
Sprott, Mark R.
Poudel, Anup
Campsie, Paul
Childs, Peter
Reid, Stuart
Salmerón-Sánchez, Manuel
Biggs, Manus
Dalby, Matthew J.
author_sort Donnelly, Hannah
collection PubMed
description [Image: see text] There is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such as mesenchymal stromal cells (MSCs), into a potential bone-graft material could help to fulfill clinical demand. However, osteogenesis of MSCs can typically require long culture periods that are impractical in a clinical setting and can lead to significant cost. Investigation into strategies that optimize cell production is essential. Here, we use the piezoelectric copolymer poly(vinylidene fluoride–trifluoroethylene) (PVDF-TrFE), functionalized with a poly(ethyl acrylate) (PEA) coating that drives fibronectin network formation, to enhance MSC adhesion and to present growth factors in the solid phase. Dynamic electrical cues are then incorporated, via a nanovibrational bioreactor, and the MSC response to electromechanical stimulation is investigated.
format Online
Article
Text
id pubmed-10636716
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-106367162023-11-15 Surface-Modified Piezoelectric Copolymer Poly(vinylidene fluoride–trifluoroethylene) Supporting Physiological Extracellular Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical Stimulation Donnelly, Hannah Sprott, Mark R. Poudel, Anup Campsie, Paul Childs, Peter Reid, Stuart Salmerón-Sánchez, Manuel Biggs, Manus Dalby, Matthew J. ACS Appl Mater Interfaces [Image: see text] There is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such as mesenchymal stromal cells (MSCs), into a potential bone-graft material could help to fulfill clinical demand. However, osteogenesis of MSCs can typically require long culture periods that are impractical in a clinical setting and can lead to significant cost. Investigation into strategies that optimize cell production is essential. Here, we use the piezoelectric copolymer poly(vinylidene fluoride–trifluoroethylene) (PVDF-TrFE), functionalized with a poly(ethyl acrylate) (PEA) coating that drives fibronectin network formation, to enhance MSC adhesion and to present growth factors in the solid phase. Dynamic electrical cues are then incorporated, via a nanovibrational bioreactor, and the MSC response to electromechanical stimulation is investigated. American Chemical Society 2023-09-18 /pmc/articles/PMC10636716/ /pubmed/37718477 http://dx.doi.org/10.1021/acsami.3c05128 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Donnelly, Hannah
Sprott, Mark R.
Poudel, Anup
Campsie, Paul
Childs, Peter
Reid, Stuart
Salmerón-Sánchez, Manuel
Biggs, Manus
Dalby, Matthew J.
Surface-Modified Piezoelectric Copolymer Poly(vinylidene fluoride–trifluoroethylene) Supporting Physiological Extracellular Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical Stimulation
title Surface-Modified Piezoelectric Copolymer Poly(vinylidene fluoride–trifluoroethylene) Supporting Physiological Extracellular Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical Stimulation
title_full Surface-Modified Piezoelectric Copolymer Poly(vinylidene fluoride–trifluoroethylene) Supporting Physiological Extracellular Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical Stimulation
title_fullStr Surface-Modified Piezoelectric Copolymer Poly(vinylidene fluoride–trifluoroethylene) Supporting Physiological Extracellular Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical Stimulation
title_full_unstemmed Surface-Modified Piezoelectric Copolymer Poly(vinylidene fluoride–trifluoroethylene) Supporting Physiological Extracellular Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical Stimulation
title_short Surface-Modified Piezoelectric Copolymer Poly(vinylidene fluoride–trifluoroethylene) Supporting Physiological Extracellular Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical Stimulation
title_sort surface-modified piezoelectric copolymer poly(vinylidene fluoride–trifluoroethylene) supporting physiological extracellular matrixes to enhance mesenchymal stem cell adhesion for nanoscale mechanical stimulation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636716/
https://www.ncbi.nlm.nih.gov/pubmed/37718477
http://dx.doi.org/10.1021/acsami.3c05128
work_keys_str_mv AT donnellyhannah surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation
AT sprottmarkr surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation
AT poudelanup surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation
AT campsiepaul surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation
AT childspeter surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation
AT reidstuart surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation
AT salmeronsanchezmanuel surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation
AT biggsmanus surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation
AT dalbymatthewj surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation