Cargando…
Surface-Modified Piezoelectric Copolymer Poly(vinylidene fluoride–trifluoroethylene) Supporting Physiological Extracellular Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical Stimulation
[Image: see text] There is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636716/ https://www.ncbi.nlm.nih.gov/pubmed/37718477 http://dx.doi.org/10.1021/acsami.3c05128 |
_version_ | 1785146462337761280 |
---|---|
author | Donnelly, Hannah Sprott, Mark R. Poudel, Anup Campsie, Paul Childs, Peter Reid, Stuart Salmerón-Sánchez, Manuel Biggs, Manus Dalby, Matthew J. |
author_facet | Donnelly, Hannah Sprott, Mark R. Poudel, Anup Campsie, Paul Childs, Peter Reid, Stuart Salmerón-Sánchez, Manuel Biggs, Manus Dalby, Matthew J. |
author_sort | Donnelly, Hannah |
collection | PubMed |
description | [Image: see text] There is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such as mesenchymal stromal cells (MSCs), into a potential bone-graft material could help to fulfill clinical demand. However, osteogenesis of MSCs can typically require long culture periods that are impractical in a clinical setting and can lead to significant cost. Investigation into strategies that optimize cell production is essential. Here, we use the piezoelectric copolymer poly(vinylidene fluoride–trifluoroethylene) (PVDF-TrFE), functionalized with a poly(ethyl acrylate) (PEA) coating that drives fibronectin network formation, to enhance MSC adhesion and to present growth factors in the solid phase. Dynamic electrical cues are then incorporated, via a nanovibrational bioreactor, and the MSC response to electromechanical stimulation is investigated. |
format | Online Article Text |
id | pubmed-10636716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-106367162023-11-15 Surface-Modified Piezoelectric Copolymer Poly(vinylidene fluoride–trifluoroethylene) Supporting Physiological Extracellular Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical Stimulation Donnelly, Hannah Sprott, Mark R. Poudel, Anup Campsie, Paul Childs, Peter Reid, Stuart Salmerón-Sánchez, Manuel Biggs, Manus Dalby, Matthew J. ACS Appl Mater Interfaces [Image: see text] There is an unmet clinical need to provide viable bone grafts for clinical use. Autologous bone, one of the most commonly transplanted tissues, is often used but is associated with donor site morbidity. Tissue engineering strategies to differentiate an autologous cell source, such as mesenchymal stromal cells (MSCs), into a potential bone-graft material could help to fulfill clinical demand. However, osteogenesis of MSCs can typically require long culture periods that are impractical in a clinical setting and can lead to significant cost. Investigation into strategies that optimize cell production is essential. Here, we use the piezoelectric copolymer poly(vinylidene fluoride–trifluoroethylene) (PVDF-TrFE), functionalized with a poly(ethyl acrylate) (PEA) coating that drives fibronectin network formation, to enhance MSC adhesion and to present growth factors in the solid phase. Dynamic electrical cues are then incorporated, via a nanovibrational bioreactor, and the MSC response to electromechanical stimulation is investigated. American Chemical Society 2023-09-18 /pmc/articles/PMC10636716/ /pubmed/37718477 http://dx.doi.org/10.1021/acsami.3c05128 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Donnelly, Hannah Sprott, Mark R. Poudel, Anup Campsie, Paul Childs, Peter Reid, Stuart Salmerón-Sánchez, Manuel Biggs, Manus Dalby, Matthew J. Surface-Modified Piezoelectric Copolymer Poly(vinylidene fluoride–trifluoroethylene) Supporting Physiological Extracellular Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical Stimulation |
title | Surface-Modified
Piezoelectric Copolymer Poly(vinylidene
fluoride–trifluoroethylene) Supporting Physiological Extracellular
Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical
Stimulation |
title_full | Surface-Modified
Piezoelectric Copolymer Poly(vinylidene
fluoride–trifluoroethylene) Supporting Physiological Extracellular
Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical
Stimulation |
title_fullStr | Surface-Modified
Piezoelectric Copolymer Poly(vinylidene
fluoride–trifluoroethylene) Supporting Physiological Extracellular
Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical
Stimulation |
title_full_unstemmed | Surface-Modified
Piezoelectric Copolymer Poly(vinylidene
fluoride–trifluoroethylene) Supporting Physiological Extracellular
Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical
Stimulation |
title_short | Surface-Modified
Piezoelectric Copolymer Poly(vinylidene
fluoride–trifluoroethylene) Supporting Physiological Extracellular
Matrixes to Enhance Mesenchymal Stem Cell Adhesion for Nanoscale Mechanical
Stimulation |
title_sort | surface-modified
piezoelectric copolymer poly(vinylidene
fluoride–trifluoroethylene) supporting physiological extracellular
matrixes to enhance mesenchymal stem cell adhesion for nanoscale mechanical
stimulation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636716/ https://www.ncbi.nlm.nih.gov/pubmed/37718477 http://dx.doi.org/10.1021/acsami.3c05128 |
work_keys_str_mv | AT donnellyhannah surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation AT sprottmarkr surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation AT poudelanup surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation AT campsiepaul surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation AT childspeter surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation AT reidstuart surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation AT salmeronsanchezmanuel surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation AT biggsmanus surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation AT dalbymatthewj surfacemodifiedpiezoelectriccopolymerpolyvinylidenefluoridetrifluoroethylenesupportingphysiologicalextracellularmatrixestoenhancemesenchymalstemcelladhesionfornanoscalemechanicalstimulation |