Cargando…
A vendor-agnostic, PACS integrated, and DICOM-compatible software-server pipeline for testing segmentation algorithms within the clinical radiology workflow
BACKGROUND: Reproducible approaches are needed to bring AI/ML for medical image analysis closer to the bedside. Investigators wishing to shadow test cross-sectional medical imaging segmentation algorithms on new studies in real-time will benefit from simple tools that integrate PACS with on-premises...
Autores principales: | Zhang, Lei, LaBelle, Wayne, Unberath, Mathias, Chen, Haomin, Hu, Jiazhen, Li, Guang, Dreizin, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637622/ https://www.ncbi.nlm.nih.gov/pubmed/37954555 http://dx.doi.org/10.3389/fmed.2023.1241570 |
Ejemplares similares
-
A vendor-agnostic, PACS integrated, and DICOMcompatible software-server pipeline for testing segmentation algorithms within the clinical radiology workflow
por: Zhang, Lei, et al.
Publicado: (2023) -
Reengineering Workflow for Curation of DICOM Datasets
por: Bennett, William, et al.
Publicado: (2018) -
Vendor neutral archive in PACS
por: Agarwal, Tapesh Kumar, et al.
Publicado: (2012) -
Deep Learning–driven classification of external DICOM studies for PACS archiving
por: Jonske, Frederic, et al.
Publicado: (2022) -
A DICOM Framework for Machine Learning and Processing Pipelines Against Real-time Radiology Images
por: Kathiravelu, Pradeeban, et al.
Publicado: (2021)