Cargando…
Examining graph neural networks for crystal structures: Limitations and opportunities for capturing periodicity
Graph neural networks (GNNs) have recently been used to learn the representations of crystal structures through an end-to-end data-driven approach. However, a systematic top-down approach to evaluate and understand the limitations of GNNs in accurately capturing crystal structures has yet to be esta...
Autores principales: | Gong, Sheng, Yan, Keqiang, Xie, Tian, Shao-Horn, Yang, Gomez-Bombarelli, Rafael, Ji, Shuiwang, Grossman, Jeffrey C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637739/ https://www.ncbi.nlm.nih.gov/pubmed/37948518 http://dx.doi.org/10.1126/sciadv.adi3245 |
Ejemplares similares
-
Crystal graph attention networks for the prediction of stable materials
por: Schmidt, Jonathan, et al.
Publicado: (2021) -
Efficient catalyst screening using graph neural networks to predict strain effects on adsorption energy
por: Price, Christopher C., et al.
Publicado: (2022) -
Aggregation-induced emission: challenges and opportunities
por: Wu, Wenbo, et al.
Publicado: (2020) -
Disordered topological graphs enhancing nonlinear phenomena
por: Jia, Zhetao, et al.
Publicado: (2023) -
Possibilities and limitations of intravital imaging
por: Hassan, Reham
Publicado: (2016)