Cargando…
Identification of key circadian rhythm genes in skin aging based on bioinformatics and machine learning
Skin aging is often accompanied by disruption of circadian rhythm and abnormal expression of circadian rhythm-related genes. In this study, we downloaded skin aging expression datasets from the GEO database and utilized bioinformatics and machine learning methods to explore circadian rhythm genes an...
Autores principales: | Xiao, Xiao, Feng, Hao, Liao, Yangying, Tang, Hua, Li, Lan, Li, Ke, Hu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637791/ https://www.ncbi.nlm.nih.gov/pubmed/37905958 http://dx.doi.org/10.18632/aging.205155 |
Ejemplares similares
-
Identification of key immune genes of osteoporosis based on bioinformatics and machine learning
por: Hao, Song, et al.
Publicado: (2023) -
Integrative bioinformatics analysis to identify the effects of circadian rhythm on Crohn’s disease
por: Liu, Dan, et al.
Publicado: (2022) -
Bioinformatics-Based Analysis of Circadian Rhythm Regulation Mechanisms in Alzheimer’s Disease
por: Zhang, Jie, et al.
Publicado: (2023) -
Identification of key genes and pathways in discoid lupus skin via bioinformatics analysis
por: Dong, Qian, et al.
Publicado: (2021) -
Cosmeceutical Therapy: Engaging the Repercussions of UVR Photoaging on the Skin’s Circadian Rhythm
por: Mahendra, Camille Keisha, et al.
Publicado: (2022)