Cargando…

Design principles and implementation of receiver positioning and beam steering for laser power transfer systems

Laser power transfer (LPT) is an emerging technology that can provide convenient and long-range wireless power to the ever-expanding array of electronic devices. One of the biggest challenges in implementing LPT systems is to realize receiver positioning and beam steering (RPBS) for directing power...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Minshen, Zhong, Wenxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10637920/
https://www.ncbi.nlm.nih.gov/pubmed/37953949
http://dx.doi.org/10.1016/j.isci.2023.108182
Descripción
Sumario:Laser power transfer (LPT) is an emerging technology that can provide convenient and long-range wireless power to the ever-expanding array of electronic devices. One of the biggest challenges in implementing LPT systems is to realize receiver positioning and beam steering (RPBS) for directing power toward the intended target which, however, have only been investigated by a few studies. Herein, a set of design principles is proposed, intended to assist researchers in developing systematic schemes for RPBS. Then, an open-source implementation of RPBS is designed and evaluated using two experimental protocols that simulate real-world receiver movement patterns. Notably, the experimental results show that the implementation enables 3D receiver movement within an operating range exceeding 2-m height and achieves RPBS in ∼1 s, sufficient for most indoor settings. Moreover, strategies that can improve the current design are discussed in detail. Overall, this study provides guidance that can facilitate new ideas and improvements to RPBS among researchers in relevant fields.