Cargando…
SuSiE PCA: A scalable Bayesian variable selection technique for principal component analysis
Latent factor models, like principal component analysis (PCA), provide a statistical framework to infer low-rank representation in various biological contexts. However, feature selection is challenging when this low-rank structure manifests from a sparse subspace. We introduce SuSiE PCA, a scalable...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638022/ https://www.ncbi.nlm.nih.gov/pubmed/37953948 http://dx.doi.org/10.1016/j.isci.2023.108181 |