Cargando…
SuSiE PCA: A scalable Bayesian variable selection technique for principal component analysis
Latent factor models, like principal component analysis (PCA), provide a statistical framework to infer low-rank representation in various biological contexts. However, feature selection is challenging when this low-rank structure manifests from a sparse subspace. We introduce SuSiE PCA, a scalable...
Autores principales: | Yuan, Dong, Mancuso, Nicholas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638022/ https://www.ncbi.nlm.nih.gov/pubmed/37953948 http://dx.doi.org/10.1016/j.isci.2023.108181 |
Ejemplares similares
-
Parameter estimation of the structured illumination pattern based on principal component analysis (PCA): PCA-SIM
por: Chen, Xin, et al.
Publicado: (2023) -
Application of Principal Component Analysis (PCA) to the Evaluation and Screening of Multiactivity Fungi
por: Yang, Zonglin, et al.
Publicado: (2022) -
Integration of Expression QTLs with fine mapping via SuSiE
por: Zhang, Xiangyu, et al.
Publicado: (2023) -
Dosimetric assessment of prostate cancer patients through principal component analysis (PCA)
por: Gloi, Aime M, et al.
Publicado: (2013) -
pcaExplorer: an R/Bioconductor package for interacting with RNA-seq principal components
por: Marini, Federico, et al.
Publicado: (2019)