Cargando…

An IQ consortium analysis of starting dose selection for oncology small molecule first-in-patient trials suggests an alternative NOAEL-based method can be safe while reducing time to the recommended phase 2 dose

The first-in-patient (FIP) starting dose for oncology agents should be reasonably safe and provide potential therapeutic benefit to the patient. For late-stage oncology patients, this dose is often based on the ICH S9 guidance, which was developed primarily based on experience with cytotoxic chemoth...

Descripción completa

Detalles Bibliográficos
Autores principales: Jessen, Bart A., Cornwell, Paul, Redmond, Sean, Visalli, Thomas, Lemper, Marie, Bunch, Todd, Hart, Timothy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638197/
https://www.ncbi.nlm.nih.gov/pubmed/37505272
http://dx.doi.org/10.1007/s00280-023-04570-3
Descripción
Sumario:The first-in-patient (FIP) starting dose for oncology agents should be reasonably safe and provide potential therapeutic benefit to the patient. For late-stage oncology patients, this dose is often based on the ICH S9 guidance, which was developed primarily based on experience with cytotoxic chemotherapeutic agents using the rodent STD(10) or non-rodent HNSTD and an appropriate safety factor. With the increase in molecularly targeted chemotherapeutics, it is prudent to re-evaluate how the FIP dose is derived to ensure that the appropriate balance between risk and therapeutic benefit to the patient is achieved. Blinded data on 92 small molecule oncology compounds from 12 pharmaceutical companies who are members of the IQ DruSafe consortium were gathered to investigate if a NOAEL-based starting dose without a safety factor would have been tolerated in the FIP trial and if so, estimating how many dose escalation cohorts could have been reduced. Our analysis suggests that the NOAEL-based alternative starting dose would have been tolerated in most cases evaluated, with an anticipated mean reduction of 2.3 cohorts. Of the 12 cases where the alternative approach resulted in a starting dose that would have exceeded the MTD/RP2D, none of the nonclinical toxicities in these cases were considered irreversible and would be monitorable in all but one instance. Most non-tolerated cases were within two–threefold of the MTD/RP2D, with the clinical AEs considered manageable and mitigated by dose de-escalation. No one method of FIP dose calculation will likely be appropriate for all oncology small molecules and starting dose selection should be performed using a case-by-case approach. However, the NOAEL-based method that does not utilize a safety factor should be considered when appropriate to minimize the number of patients exposed to sub-therapeutic doses of an investigational oncology agent and accelerating development to RP2D. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00280-023-04570-3.