Cargando…

Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles

Neuronal communication relies on the release of neurotransmitters from various populations of synaptic vesicles. Despite displaying vastly different release probabilities and mobilities, the reserve and recycling pool of vesicles co-exist within a single cluster suggesting that small synaptic biomol...

Descripción completa

Detalles Bibliográficos
Autores principales: Longfield, Shanley F., Mollazade, Mahdie, Wallis, Tristan P., Gormal, Rachel S., Joensuu, Merja, Wark, Jesse R., van Waardenberg, Ashley J., Small, Christopher, Graham, Mark E., Meunier, Frédéric A., Martínez-Mármol, Ramón
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638352/
https://www.ncbi.nlm.nih.gov/pubmed/37949856
http://dx.doi.org/10.1038/s41467-023-43130-4
_version_ 1785133577949675520
author Longfield, Shanley F.
Mollazade, Mahdie
Wallis, Tristan P.
Gormal, Rachel S.
Joensuu, Merja
Wark, Jesse R.
van Waardenberg, Ashley J.
Small, Christopher
Graham, Mark E.
Meunier, Frédéric A.
Martínez-Mármol, Ramón
author_facet Longfield, Shanley F.
Mollazade, Mahdie
Wallis, Tristan P.
Gormal, Rachel S.
Joensuu, Merja
Wark, Jesse R.
van Waardenberg, Ashley J.
Small, Christopher
Graham, Mark E.
Meunier, Frédéric A.
Martínez-Mármol, Ramón
author_sort Longfield, Shanley F.
collection PubMed
description Neuronal communication relies on the release of neurotransmitters from various populations of synaptic vesicles. Despite displaying vastly different release probabilities and mobilities, the reserve and recycling pool of vesicles co-exist within a single cluster suggesting that small synaptic biomolecular condensates could regulate their nanoscale distribution. Here, we performed a large-scale activity-dependent phosphoproteome analysis of hippocampal neurons in vitro and identified Tau as a highly phosphorylated and disordered candidate protein. Single-molecule super-resolution microscopy revealed that Tau undergoes liquid-liquid phase separation to generate presynaptic nanoclusters whose density and number are regulated by activity. This activity-dependent diffusion process allows Tau to translocate into the presynapse where it forms biomolecular condensates, to selectively control the mobility of recycling vesicles. Tau, therefore, forms presynaptic nano-biomolecular condensates that regulate the nanoscale organization of synaptic vesicles in an activity-dependent manner.
format Online
Article
Text
id pubmed-10638352
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106383522023-11-11 Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles Longfield, Shanley F. Mollazade, Mahdie Wallis, Tristan P. Gormal, Rachel S. Joensuu, Merja Wark, Jesse R. van Waardenberg, Ashley J. Small, Christopher Graham, Mark E. Meunier, Frédéric A. Martínez-Mármol, Ramón Nat Commun Article Neuronal communication relies on the release of neurotransmitters from various populations of synaptic vesicles. Despite displaying vastly different release probabilities and mobilities, the reserve and recycling pool of vesicles co-exist within a single cluster suggesting that small synaptic biomolecular condensates could regulate their nanoscale distribution. Here, we performed a large-scale activity-dependent phosphoproteome analysis of hippocampal neurons in vitro and identified Tau as a highly phosphorylated and disordered candidate protein. Single-molecule super-resolution microscopy revealed that Tau undergoes liquid-liquid phase separation to generate presynaptic nanoclusters whose density and number are regulated by activity. This activity-dependent diffusion process allows Tau to translocate into the presynapse where it forms biomolecular condensates, to selectively control the mobility of recycling vesicles. Tau, therefore, forms presynaptic nano-biomolecular condensates that regulate the nanoscale organization of synaptic vesicles in an activity-dependent manner. Nature Publishing Group UK 2023-11-10 /pmc/articles/PMC10638352/ /pubmed/37949856 http://dx.doi.org/10.1038/s41467-023-43130-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Longfield, Shanley F.
Mollazade, Mahdie
Wallis, Tristan P.
Gormal, Rachel S.
Joensuu, Merja
Wark, Jesse R.
van Waardenberg, Ashley J.
Small, Christopher
Graham, Mark E.
Meunier, Frédéric A.
Martínez-Mármol, Ramón
Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles
title Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles
title_full Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles
title_fullStr Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles
title_full_unstemmed Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles
title_short Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles
title_sort tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638352/
https://www.ncbi.nlm.nih.gov/pubmed/37949856
http://dx.doi.org/10.1038/s41467-023-43130-4
work_keys_str_mv AT longfieldshanleyf tauformssynapticnanobiomolecularcondensatescontrollingthedynamicclusteringofrecyclingsynapticvesicles
AT mollazademahdie tauformssynapticnanobiomolecularcondensatescontrollingthedynamicclusteringofrecyclingsynapticvesicles
AT wallistristanp tauformssynapticnanobiomolecularcondensatescontrollingthedynamicclusteringofrecyclingsynapticvesicles
AT gormalrachels tauformssynapticnanobiomolecularcondensatescontrollingthedynamicclusteringofrecyclingsynapticvesicles
AT joensuumerja tauformssynapticnanobiomolecularcondensatescontrollingthedynamicclusteringofrecyclingsynapticvesicles
AT warkjesser tauformssynapticnanobiomolecularcondensatescontrollingthedynamicclusteringofrecyclingsynapticvesicles
AT vanwaardenbergashleyj tauformssynapticnanobiomolecularcondensatescontrollingthedynamicclusteringofrecyclingsynapticvesicles
AT smallchristopher tauformssynapticnanobiomolecularcondensatescontrollingthedynamicclusteringofrecyclingsynapticvesicles
AT grahammarke tauformssynapticnanobiomolecularcondensatescontrollingthedynamicclusteringofrecyclingsynapticvesicles
AT meunierfrederica tauformssynapticnanobiomolecularcondensatescontrollingthedynamicclusteringofrecyclingsynapticvesicles
AT martinezmarmolramon tauformssynapticnanobiomolecularcondensatescontrollingthedynamicclusteringofrecyclingsynapticvesicles