Cargando…
Efficient automated error detection in medical data using deep-learning and label-clustering
Medical datasets inherently contain errors from subjective or inaccurate test results, or from confounding biological complexities. It is difficult for medical experts to detect these elusive errors manually, due to lack of contextual information, limiting data privacy regulations, and the sheer sca...
Autores principales: | Nguyen, T. V., Diakiw, S. M., VerMilyea, M. D., Dinsmore, A. W., Perugini, M., Perugini, D., Hall, J. M. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638377/ https://www.ncbi.nlm.nih.gov/pubmed/37949906 http://dx.doi.org/10.1038/s41598-023-45946-y |
Ejemplares similares
-
Automated detection of poor-quality data: case studies in healthcare
por: Dakka, M. A., et al.
Publicado: (2021) -
A novel decentralized federated learning approach to train on globally distributed, poor quality, and protected private medical data
por: Nguyen, T. V., et al.
Publicado: (2022) -
Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF
por: VerMilyea, M, et al.
Publicado: (2020) -
Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF
por: Diakiw, S M, et al.
Publicado: (2022) -
Transcription-Independent Heritability of Induced Histone Modifications in the Mouse Preimplantation Embryo
por: VerMilyea, Matthew D., et al.
Publicado: (2009)