Cargando…
Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning
We aimed to develop machine learning-based predictive models for identifying inappropriate implantable cardioverter-defibrillator (ICD) therapy. Our study included 182 consecutive cases (average age 62.2 ± 4.5 years, 169 men) and employed 14 non-deep learning models for prediction (hold-out method)....
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638417/ https://www.ncbi.nlm.nih.gov/pubmed/37949876 http://dx.doi.org/10.1038/s41598-023-46095-y |
_version_ | 1785133592686362624 |
---|---|
author | Tateishi, Ryo Suzuki, Makoto Shimizu, Masato Shimada, Hiroshi Tsunoda, Takahiro Miyazaki, Hiroko Misu, Yoshiki Yamakami, Yosuke Yamaguchi, Masao Kato, Nobutaka Isshiki, Ami Kimura, Shigeki Fujii, Hiroyuki Nishizaki, Mitsuhiro Sasano, Tetsuo |
author_facet | Tateishi, Ryo Suzuki, Makoto Shimizu, Masato Shimada, Hiroshi Tsunoda, Takahiro Miyazaki, Hiroko Misu, Yoshiki Yamakami, Yosuke Yamaguchi, Masao Kato, Nobutaka Isshiki, Ami Kimura, Shigeki Fujii, Hiroyuki Nishizaki, Mitsuhiro Sasano, Tetsuo |
author_sort | Tateishi, Ryo |
collection | PubMed |
description | We aimed to develop machine learning-based predictive models for identifying inappropriate implantable cardioverter-defibrillator (ICD) therapy. Our study included 182 consecutive cases (average age 62.2 ± 4.5 years, 169 men) and employed 14 non-deep learning models for prediction (hold-out method). These models utilized selected electrocardiogram parameters and clinical features collected after ICD implantation. From the feature importance analysis of the best ML model, we established easily calculable scores. Among the patients, 25 (13.7%) experienced inappropriate therapy, and we identified 16 significant predictors. Using recursive feature elimination with cross-validation, we reduced the features to six with high feature importance: history of atrial arrhythmia (Atr-arrhythm), ischemic cardiomyopathy (ICM), absence of diabetes mellitus (DM), lack of cardiac resynchronization therapy (CRT), V3 ST level at J point (V3 STJ), and V5 R-wave amplitudes (V5R amp). The extra-trees classifier yielded the highest area under receiver operating characteristics curve (AUROC; 0.869 on test data). Thus, the Cardi35 score was defined as [+ 5.5*Atr-arrhythm − 1.5*CRT + 1.0*V3STJ + 1.0*V5R − 1.0*ICM − 0.5*DM], which demonstrated a hazard ratio of 1.62 (P < 0.001). A cut-off value of the score + 5.5 showed high AUROC (0.826). The ML approach can yield a robust prediction model, and the Cardi35 score was a convenient predictor for inappropriate therapy. |
format | Online Article Text |
id | pubmed-10638417 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-106384172023-11-11 Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning Tateishi, Ryo Suzuki, Makoto Shimizu, Masato Shimada, Hiroshi Tsunoda, Takahiro Miyazaki, Hiroko Misu, Yoshiki Yamakami, Yosuke Yamaguchi, Masao Kato, Nobutaka Isshiki, Ami Kimura, Shigeki Fujii, Hiroyuki Nishizaki, Mitsuhiro Sasano, Tetsuo Sci Rep Article We aimed to develop machine learning-based predictive models for identifying inappropriate implantable cardioverter-defibrillator (ICD) therapy. Our study included 182 consecutive cases (average age 62.2 ± 4.5 years, 169 men) and employed 14 non-deep learning models for prediction (hold-out method). These models utilized selected electrocardiogram parameters and clinical features collected after ICD implantation. From the feature importance analysis of the best ML model, we established easily calculable scores. Among the patients, 25 (13.7%) experienced inappropriate therapy, and we identified 16 significant predictors. Using recursive feature elimination with cross-validation, we reduced the features to six with high feature importance: history of atrial arrhythmia (Atr-arrhythm), ischemic cardiomyopathy (ICM), absence of diabetes mellitus (DM), lack of cardiac resynchronization therapy (CRT), V3 ST level at J point (V3 STJ), and V5 R-wave amplitudes (V5R amp). The extra-trees classifier yielded the highest area under receiver operating characteristics curve (AUROC; 0.869 on test data). Thus, the Cardi35 score was defined as [+ 5.5*Atr-arrhythm − 1.5*CRT + 1.0*V3STJ + 1.0*V5R − 1.0*ICM − 0.5*DM], which demonstrated a hazard ratio of 1.62 (P < 0.001). A cut-off value of the score + 5.5 showed high AUROC (0.826). The ML approach can yield a robust prediction model, and the Cardi35 score was a convenient predictor for inappropriate therapy. Nature Publishing Group UK 2023-11-09 /pmc/articles/PMC10638417/ /pubmed/37949876 http://dx.doi.org/10.1038/s41598-023-46095-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Tateishi, Ryo Suzuki, Makoto Shimizu, Masato Shimada, Hiroshi Tsunoda, Takahiro Miyazaki, Hiroko Misu, Yoshiki Yamakami, Yosuke Yamaguchi, Masao Kato, Nobutaka Isshiki, Ami Kimura, Shigeki Fujii, Hiroyuki Nishizaki, Mitsuhiro Sasano, Tetsuo Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning |
title | Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning |
title_full | Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning |
title_fullStr | Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning |
title_full_unstemmed | Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning |
title_short | Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning |
title_sort | risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638417/ https://www.ncbi.nlm.nih.gov/pubmed/37949876 http://dx.doi.org/10.1038/s41598-023-46095-y |
work_keys_str_mv | AT tateishiryo riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT suzukimakoto riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT shimizumasato riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT shimadahiroshi riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT tsunodatakahiro riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT miyazakihiroko riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT misuyoshiki riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT yamakamiyosuke riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT yamaguchimasao riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT katonobutaka riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT isshikiami riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT kimurashigeki riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT fujiihiroyuki riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT nishizakimitsuhiro riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning AT sasanotetsuo riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning |