Cargando…

Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning

We aimed to develop machine learning-based predictive models for identifying inappropriate implantable cardioverter-defibrillator (ICD) therapy. Our study included 182 consecutive cases (average age 62.2 ± 4.5 years, 169 men) and employed 14 non-deep learning models for prediction (hold-out method)....

Descripción completa

Detalles Bibliográficos
Autores principales: Tateishi, Ryo, Suzuki, Makoto, Shimizu, Masato, Shimada, Hiroshi, Tsunoda, Takahiro, Miyazaki, Hiroko, Misu, Yoshiki, Yamakami, Yosuke, Yamaguchi, Masao, Kato, Nobutaka, Isshiki, Ami, Kimura, Shigeki, Fujii, Hiroyuki, Nishizaki, Mitsuhiro, Sasano, Tetsuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638417/
https://www.ncbi.nlm.nih.gov/pubmed/37949876
http://dx.doi.org/10.1038/s41598-023-46095-y
_version_ 1785133592686362624
author Tateishi, Ryo
Suzuki, Makoto
Shimizu, Masato
Shimada, Hiroshi
Tsunoda, Takahiro
Miyazaki, Hiroko
Misu, Yoshiki
Yamakami, Yosuke
Yamaguchi, Masao
Kato, Nobutaka
Isshiki, Ami
Kimura, Shigeki
Fujii, Hiroyuki
Nishizaki, Mitsuhiro
Sasano, Tetsuo
author_facet Tateishi, Ryo
Suzuki, Makoto
Shimizu, Masato
Shimada, Hiroshi
Tsunoda, Takahiro
Miyazaki, Hiroko
Misu, Yoshiki
Yamakami, Yosuke
Yamaguchi, Masao
Kato, Nobutaka
Isshiki, Ami
Kimura, Shigeki
Fujii, Hiroyuki
Nishizaki, Mitsuhiro
Sasano, Tetsuo
author_sort Tateishi, Ryo
collection PubMed
description We aimed to develop machine learning-based predictive models for identifying inappropriate implantable cardioverter-defibrillator (ICD) therapy. Our study included 182 consecutive cases (average age 62.2 ± 4.5 years, 169 men) and employed 14 non-deep learning models for prediction (hold-out method). These models utilized selected electrocardiogram parameters and clinical features collected after ICD implantation. From the feature importance analysis of the best ML model, we established easily calculable scores. Among the patients, 25 (13.7%) experienced inappropriate therapy, and we identified 16 significant predictors. Using recursive feature elimination with cross-validation, we reduced the features to six with high feature importance: history of atrial arrhythmia (Atr-arrhythm), ischemic cardiomyopathy (ICM), absence of diabetes mellitus (DM), lack of cardiac resynchronization therapy (CRT), V3 ST level at J point (V3 STJ), and V5 R-wave amplitudes (V5R amp). The extra-trees classifier yielded the highest area under receiver operating characteristics curve (AUROC; 0.869 on test data). Thus, the Cardi35 score was defined as [+ 5.5*Atr-arrhythm − 1.5*CRT + 1.0*V3STJ + 1.0*V5R − 1.0*ICM − 0.5*DM], which demonstrated a hazard ratio of 1.62 (P < 0.001). A cut-off value of the score + 5.5 showed high AUROC (0.826). The ML approach can yield a robust prediction model, and the Cardi35 score was a convenient predictor for inappropriate therapy.
format Online
Article
Text
id pubmed-10638417
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-106384172023-11-11 Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning Tateishi, Ryo Suzuki, Makoto Shimizu, Masato Shimada, Hiroshi Tsunoda, Takahiro Miyazaki, Hiroko Misu, Yoshiki Yamakami, Yosuke Yamaguchi, Masao Kato, Nobutaka Isshiki, Ami Kimura, Shigeki Fujii, Hiroyuki Nishizaki, Mitsuhiro Sasano, Tetsuo Sci Rep Article We aimed to develop machine learning-based predictive models for identifying inappropriate implantable cardioverter-defibrillator (ICD) therapy. Our study included 182 consecutive cases (average age 62.2 ± 4.5 years, 169 men) and employed 14 non-deep learning models for prediction (hold-out method). These models utilized selected electrocardiogram parameters and clinical features collected after ICD implantation. From the feature importance analysis of the best ML model, we established easily calculable scores. Among the patients, 25 (13.7%) experienced inappropriate therapy, and we identified 16 significant predictors. Using recursive feature elimination with cross-validation, we reduced the features to six with high feature importance: history of atrial arrhythmia (Atr-arrhythm), ischemic cardiomyopathy (ICM), absence of diabetes mellitus (DM), lack of cardiac resynchronization therapy (CRT), V3 ST level at J point (V3 STJ), and V5 R-wave amplitudes (V5R amp). The extra-trees classifier yielded the highest area under receiver operating characteristics curve (AUROC; 0.869 on test data). Thus, the Cardi35 score was defined as [+ 5.5*Atr-arrhythm − 1.5*CRT + 1.0*V3STJ + 1.0*V5R − 1.0*ICM − 0.5*DM], which demonstrated a hazard ratio of 1.62 (P < 0.001). A cut-off value of the score + 5.5 showed high AUROC (0.826). The ML approach can yield a robust prediction model, and the Cardi35 score was a convenient predictor for inappropriate therapy. Nature Publishing Group UK 2023-11-09 /pmc/articles/PMC10638417/ /pubmed/37949876 http://dx.doi.org/10.1038/s41598-023-46095-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Tateishi, Ryo
Suzuki, Makoto
Shimizu, Masato
Shimada, Hiroshi
Tsunoda, Takahiro
Miyazaki, Hiroko
Misu, Yoshiki
Yamakami, Yosuke
Yamaguchi, Masao
Kato, Nobutaka
Isshiki, Ami
Kimura, Shigeki
Fujii, Hiroyuki
Nishizaki, Mitsuhiro
Sasano, Tetsuo
Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning
title Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning
title_full Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning
title_fullStr Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning
title_full_unstemmed Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning
title_short Risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning
title_sort risk prediction of inappropriate implantable cardioverter-defibrillator therapy using machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638417/
https://www.ncbi.nlm.nih.gov/pubmed/37949876
http://dx.doi.org/10.1038/s41598-023-46095-y
work_keys_str_mv AT tateishiryo riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT suzukimakoto riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT shimizumasato riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT shimadahiroshi riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT tsunodatakahiro riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT miyazakihiroko riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT misuyoshiki riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT yamakamiyosuke riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT yamaguchimasao riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT katonobutaka riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT isshikiami riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT kimurashigeki riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT fujiihiroyuki riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT nishizakimitsuhiro riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning
AT sasanotetsuo riskpredictionofinappropriateimplantablecardioverterdefibrillatortherapyusingmachinelearning