Cargando…
CRISPR-mediated genome editing allows for efficient on demand creation of >200 kb deficiencies with precise boundaries.
Deficiency mapping remains a useful tool in the process of identifying causative genetic lesions in C. elegans mutant strains isolated from forward genetic screens, in particular of non-coding mutants. However, there are significant areas across the genome with no deficiency coverage at all, and the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Caltech Library
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638593/ https://www.ncbi.nlm.nih.gov/pubmed/37954518 http://dx.doi.org/10.17912/micropub.biology.000949 |
Sumario: | Deficiency mapping remains a useful tool in the process of identifying causative genetic lesions in C. elegans mutant strains isolated from forward genetic screens, in particular of non-coding mutants. However, there are significant areas across the genome with no deficiency coverage at all, and the boundaries of many deficiencies remain poorly defined. Here, we describe a simple methodology to generate balanced deficiency strains with up to 230 kb molecularly defined deletions (mini-deficiencies) using CRISPR/Cas9, thus providing a simple path for both precise and tailored deficiency mapping. |
---|