Cargando…

The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study

BACKGROUND: Sensitive and interpretable machine learning (ML) models can provide valuable assistance to clinicians in managing patients with heart failure (HF) at discharge by identifying individual factors associated with a high risk of readmission. In this cohort study, we delve into the factors d...

Descripción completa

Detalles Bibliográficos
Autores principales: Soliman, Amira, Agvall, Björn, Etminani, Kobra, Hamed, Omar, Lingman, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638630/
https://www.ncbi.nlm.nih.gov/pubmed/37889530
http://dx.doi.org/10.2196/46934
_version_ 1785133636578705408
author Soliman, Amira
Agvall, Björn
Etminani, Kobra
Hamed, Omar
Lingman, Markus
author_facet Soliman, Amira
Agvall, Björn
Etminani, Kobra
Hamed, Omar
Lingman, Markus
author_sort Soliman, Amira
collection PubMed
description BACKGROUND: Sensitive and interpretable machine learning (ML) models can provide valuable assistance to clinicians in managing patients with heart failure (HF) at discharge by identifying individual factors associated with a high risk of readmission. In this cohort study, we delve into the factors driving the potential utility of classification models as decision support tools for predicting readmissions in patients with HF. OBJECTIVE: The primary objective of this study is to assess the trade-off between using deep learning (DL) and traditional ML models to identify the risk of 100-day readmissions in patients with HF. Additionally, the study aims to provide explanations for the model predictions by highlighting important features both on a global scale across the patient cohort and on a local level for individual patients. METHODS: The retrospective data for this study were obtained from the Regional Health Care Information Platform in Region Halland, Sweden. The study cohort consisted of patients diagnosed with HF who were over 40 years old and had been hospitalized at least once between 2017 and 2019. Data analysis encompassed the period from January 1, 2017, to December 31, 2019. Two ML models were developed and validated to predict 100-day readmissions, with a focus on the explainability of the model’s decisions. These models were built based on decision trees and recurrent neural architecture. Model explainability was obtained using an ML explainer. The predictive performance of these models was compared against 2 risk assessment tools using multiple performance metrics. RESULTS: The retrospective data set included a total of 15,612 admissions, and within these admissions, readmission occurred in 5597 cases, representing a readmission rate of 35.85%. It is noteworthy that a traditional and explainable model, informed by clinical knowledge, exhibited performance comparable to the DL model and surpassed conventional scoring methods in predicting readmission among patients with HF. The evaluation of predictive model performance was based on commonly used metrics, with an area under the precision-recall curve of 66% for the deep model and 68% for the traditional model on the holdout data set. Importantly, the explanations provided by the traditional model offer actionable insights that have the potential to enhance care planning. CONCLUSIONS: This study found that a widely used deep prediction model did not outperform an explainable ML model when predicting readmissions among patients with HF. The results suggest that model transparency does not necessarily compromise performance, which could facilitate the clinical adoption of such models.
format Online
Article
Text
id pubmed-10638630
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-106386302023-11-11 The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study Soliman, Amira Agvall, Björn Etminani, Kobra Hamed, Omar Lingman, Markus J Med Internet Res Original Paper BACKGROUND: Sensitive and interpretable machine learning (ML) models can provide valuable assistance to clinicians in managing patients with heart failure (HF) at discharge by identifying individual factors associated with a high risk of readmission. In this cohort study, we delve into the factors driving the potential utility of classification models as decision support tools for predicting readmissions in patients with HF. OBJECTIVE: The primary objective of this study is to assess the trade-off between using deep learning (DL) and traditional ML models to identify the risk of 100-day readmissions in patients with HF. Additionally, the study aims to provide explanations for the model predictions by highlighting important features both on a global scale across the patient cohort and on a local level for individual patients. METHODS: The retrospective data for this study were obtained from the Regional Health Care Information Platform in Region Halland, Sweden. The study cohort consisted of patients diagnosed with HF who were over 40 years old and had been hospitalized at least once between 2017 and 2019. Data analysis encompassed the period from January 1, 2017, to December 31, 2019. Two ML models were developed and validated to predict 100-day readmissions, with a focus on the explainability of the model’s decisions. These models were built based on decision trees and recurrent neural architecture. Model explainability was obtained using an ML explainer. The predictive performance of these models was compared against 2 risk assessment tools using multiple performance metrics. RESULTS: The retrospective data set included a total of 15,612 admissions, and within these admissions, readmission occurred in 5597 cases, representing a readmission rate of 35.85%. It is noteworthy that a traditional and explainable model, informed by clinical knowledge, exhibited performance comparable to the DL model and surpassed conventional scoring methods in predicting readmission among patients with HF. The evaluation of predictive model performance was based on commonly used metrics, with an area under the precision-recall curve of 66% for the deep model and 68% for the traditional model on the holdout data set. Importantly, the explanations provided by the traditional model offer actionable insights that have the potential to enhance care planning. CONCLUSIONS: This study found that a widely used deep prediction model did not outperform an explainable ML model when predicting readmissions among patients with HF. The results suggest that model transparency does not necessarily compromise performance, which could facilitate the clinical adoption of such models. JMIR Publications 2023-10-27 /pmc/articles/PMC10638630/ /pubmed/37889530 http://dx.doi.org/10.2196/46934 Text en ©Amira Soliman, Björn Agvall, Kobra Etminani, Omar Hamed, Markus Lingman. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 27.10.2023. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Soliman, Amira
Agvall, Björn
Etminani, Kobra
Hamed, Omar
Lingman, Markus
The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study
title The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study
title_full The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study
title_fullStr The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study
title_full_unstemmed The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study
title_short The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study
title_sort price of explainability in machine learning models for 100-day readmission prediction in heart failure: retrospective, comparative, machine learning study
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638630/
https://www.ncbi.nlm.nih.gov/pubmed/37889530
http://dx.doi.org/10.2196/46934
work_keys_str_mv AT solimanamira thepriceofexplainabilityinmachinelearningmodelsfor100dayreadmissionpredictioninheartfailureretrospectivecomparativemachinelearningstudy
AT agvallbjorn thepriceofexplainabilityinmachinelearningmodelsfor100dayreadmissionpredictioninheartfailureretrospectivecomparativemachinelearningstudy
AT etminanikobra thepriceofexplainabilityinmachinelearningmodelsfor100dayreadmissionpredictioninheartfailureretrospectivecomparativemachinelearningstudy
AT hamedomar thepriceofexplainabilityinmachinelearningmodelsfor100dayreadmissionpredictioninheartfailureretrospectivecomparativemachinelearningstudy
AT lingmanmarkus thepriceofexplainabilityinmachinelearningmodelsfor100dayreadmissionpredictioninheartfailureretrospectivecomparativemachinelearningstudy
AT solimanamira priceofexplainabilityinmachinelearningmodelsfor100dayreadmissionpredictioninheartfailureretrospectivecomparativemachinelearningstudy
AT agvallbjorn priceofexplainabilityinmachinelearningmodelsfor100dayreadmissionpredictioninheartfailureretrospectivecomparativemachinelearningstudy
AT etminanikobra priceofexplainabilityinmachinelearningmodelsfor100dayreadmissionpredictioninheartfailureretrospectivecomparativemachinelearningstudy
AT hamedomar priceofexplainabilityinmachinelearningmodelsfor100dayreadmissionpredictioninheartfailureretrospectivecomparativemachinelearningstudy
AT lingmanmarkus priceofexplainabilityinmachinelearningmodelsfor100dayreadmissionpredictioninheartfailureretrospectivecomparativemachinelearningstudy