Cargando…
Bardoxolone methyl inhibits the infection of rabies virus via Nrf2 pathway activation in vitro
BACKGROUND: Rabies is a widespread, fatal, infectious disease. Several antivirals against rabies virus (RABV) infection have been reported, but no approved, RABV-specific antiviral drugs that inhibit RABV infection in the clinic after symptom onset are available. Therefore, more effective drugs to r...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638713/ https://www.ncbi.nlm.nih.gov/pubmed/37950261 http://dx.doi.org/10.1186/s12985-023-02213-w |
_version_ | 1785133653954658304 |
---|---|
author | Chi, Ying Lin Xie, Yuan Liu, Shu Qing Zhu, Wu Yang |
author_facet | Chi, Ying Lin Xie, Yuan Liu, Shu Qing Zhu, Wu Yang |
author_sort | Chi, Ying Lin |
collection | PubMed |
description | BACKGROUND: Rabies is a widespread, fatal, infectious disease. Several antivirals against rabies virus (RABV) infection have been reported, but no approved, RABV-specific antiviral drugs that inhibit RABV infection in the clinic after symptom onset are available. Therefore, more effective drugs to reduce rabies fatalities are urgently needed. Bardoxolone methyl (CDDO-Me), an FDA-approved compound that has long been known as an antioxidant inflammatory modulator and one of the most potent nuclear factor erythroid-derived 2-like 2 (Nrf2) activators, protects myelin, axons, and CNS neurons by Nrf2 activation. Therefore, we investigated the potency of its anti-RABV activity in vitro. METHODS: The mouse neuroblastoma cell line Neuro2a (N2a) and three RABV strains of different virulence were used; the cytotoxicity and anti-RABV activity of CDDO-Me in N2a cells were evaluated by CCK-8 assay and direct fluorescent antibody (DFA) assay. Pathway activation in N2a cells infected with the RABV strains SC16, CVS-11 or CTN upon CDDO-Me treatment was evaluated by western blotting (WB) and DFA assay. RESULTS: CDDO-Me significantly inhibited infection of the three RABV strains of differing virulence (SC16, CVS-11 and CTN) in N2a cells. We also examined whether CDDO-Me activates the Nrf2-associated pathway upon infection with RABV strains of differing virulence. Nrf2, phosphorylated sequestosome (SQSTM1), SQSTM1, hemoglobin oxygenase (HO-1) and NAD(P)H dehydrogenase quinone 1 (NQO1) expression in N2a cells increased to varying degrees with CDDO-Me treatment, accompanied by Kelch-like ECH-associated protein 1 (Keap1) dissociation, upon infection with SC16, CVS-11 or CTN. The activation of SQSTM1 phosphorylation was significantly associated with the degradation of Keap-1 in CDDO-Me-treated N2a cells upon RABV infection. Furthermore, N2a cells pretreated with the Nrf2-specific inhibitor ATRA showed a significant decrease in HO-1 and NQO1 expression and a decrease in the anti-RABV efficacy of CDDO-Me. These inhibitory effects were observed upon infection with three RABV strains of differing virulence. CONCLUSION: CDDO-Me inhibited RABV infection via Nrf2 activation, promoting a cytoprotective defense response in N2a cells. Our study provides a therapeutic strategy for RABV inhibition and neuroprotection during viral infection. |
format | Online Article Text |
id | pubmed-10638713 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-106387132023-11-11 Bardoxolone methyl inhibits the infection of rabies virus via Nrf2 pathway activation in vitro Chi, Ying Lin Xie, Yuan Liu, Shu Qing Zhu, Wu Yang Virol J Research BACKGROUND: Rabies is a widespread, fatal, infectious disease. Several antivirals against rabies virus (RABV) infection have been reported, but no approved, RABV-specific antiviral drugs that inhibit RABV infection in the clinic after symptom onset are available. Therefore, more effective drugs to reduce rabies fatalities are urgently needed. Bardoxolone methyl (CDDO-Me), an FDA-approved compound that has long been known as an antioxidant inflammatory modulator and one of the most potent nuclear factor erythroid-derived 2-like 2 (Nrf2) activators, protects myelin, axons, and CNS neurons by Nrf2 activation. Therefore, we investigated the potency of its anti-RABV activity in vitro. METHODS: The mouse neuroblastoma cell line Neuro2a (N2a) and three RABV strains of different virulence were used; the cytotoxicity and anti-RABV activity of CDDO-Me in N2a cells were evaluated by CCK-8 assay and direct fluorescent antibody (DFA) assay. Pathway activation in N2a cells infected with the RABV strains SC16, CVS-11 or CTN upon CDDO-Me treatment was evaluated by western blotting (WB) and DFA assay. RESULTS: CDDO-Me significantly inhibited infection of the three RABV strains of differing virulence (SC16, CVS-11 and CTN) in N2a cells. We also examined whether CDDO-Me activates the Nrf2-associated pathway upon infection with RABV strains of differing virulence. Nrf2, phosphorylated sequestosome (SQSTM1), SQSTM1, hemoglobin oxygenase (HO-1) and NAD(P)H dehydrogenase quinone 1 (NQO1) expression in N2a cells increased to varying degrees with CDDO-Me treatment, accompanied by Kelch-like ECH-associated protein 1 (Keap1) dissociation, upon infection with SC16, CVS-11 or CTN. The activation of SQSTM1 phosphorylation was significantly associated with the degradation of Keap-1 in CDDO-Me-treated N2a cells upon RABV infection. Furthermore, N2a cells pretreated with the Nrf2-specific inhibitor ATRA showed a significant decrease in HO-1 and NQO1 expression and a decrease in the anti-RABV efficacy of CDDO-Me. These inhibitory effects were observed upon infection with three RABV strains of differing virulence. CONCLUSION: CDDO-Me inhibited RABV infection via Nrf2 activation, promoting a cytoprotective defense response in N2a cells. Our study provides a therapeutic strategy for RABV inhibition and neuroprotection during viral infection. BioMed Central 2023-11-10 /pmc/articles/PMC10638713/ /pubmed/37950261 http://dx.doi.org/10.1186/s12985-023-02213-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Chi, Ying Lin Xie, Yuan Liu, Shu Qing Zhu, Wu Yang Bardoxolone methyl inhibits the infection of rabies virus via Nrf2 pathway activation in vitro |
title | Bardoxolone methyl inhibits the infection of rabies virus via Nrf2 pathway activation in vitro |
title_full | Bardoxolone methyl inhibits the infection of rabies virus via Nrf2 pathway activation in vitro |
title_fullStr | Bardoxolone methyl inhibits the infection of rabies virus via Nrf2 pathway activation in vitro |
title_full_unstemmed | Bardoxolone methyl inhibits the infection of rabies virus via Nrf2 pathway activation in vitro |
title_short | Bardoxolone methyl inhibits the infection of rabies virus via Nrf2 pathway activation in vitro |
title_sort | bardoxolone methyl inhibits the infection of rabies virus via nrf2 pathway activation in vitro |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638713/ https://www.ncbi.nlm.nih.gov/pubmed/37950261 http://dx.doi.org/10.1186/s12985-023-02213-w |
work_keys_str_mv | AT chiyinglin bardoxolonemethylinhibitstheinfectionofrabiesvirusvianrf2pathwayactivationinvitro AT xieyuan bardoxolonemethylinhibitstheinfectionofrabiesvirusvianrf2pathwayactivationinvitro AT liushuqing bardoxolonemethylinhibitstheinfectionofrabiesvirusvianrf2pathwayactivationinvitro AT zhuwuyang bardoxolonemethylinhibitstheinfectionofrabiesvirusvianrf2pathwayactivationinvitro |