Cargando…
Evaluation of deep learning-based feature selection for single-cell RNA sequencing data analysis
BACKGROUND: Feature selection is an essential task in single-cell RNA-seq (scRNA-seq) data analysis and can be critical for gene dimension reduction and downstream analyses, such as gene marker identification and cell type classification. Most popular methods for feature selection from scRNA-seq dat...
Autores principales: | Huang, Hao, Liu, Chunlei, Wagle, Manoj M., Yang, Pengyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638755/ https://www.ncbi.nlm.nih.gov/pubmed/37950331 http://dx.doi.org/10.1186/s13059-023-03100-x |
Ejemplares similares
-
Feature selection revisited in the single-cell era
por: Yang, Pengyi, et al.
Publicado: (2021) -
Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
por: Yu, Lijia, et al.
Publicado: (2023) -
Multi-task learning from multimodal single-cell omics with Matilda
por: Liu, Chunlei, et al.
Publicado: (2023) -
Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review
por: Brendel, Matthew, et al.
Publicado: (2022) -
A benchmark study of simulation methods for single-cell RNA sequencing data
por: Cao, Yue, et al.
Publicado: (2021)