Cargando…

Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial

BACKGROUND: Recent work has shown that cluster-randomised trials can estimate two distinct estimands: the participant-average and cluster-average treatment effects. These can differ when participant outcomes or the treatment effect depends on the cluster size (termed informative cluster size). In th...

Descripción completa

Detalles Bibliográficos
Autores principales: Kahan, Brennan C, Li, Fan, Blette, Bryan, Jairath, Vipul, Copas, Andrew, Harhay, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638852/
https://www.ncbi.nlm.nih.gov/pubmed/37439089
http://dx.doi.org/10.1177/17407745231186094
_version_ 1785146606412103680
author Kahan, Brennan C
Li, Fan
Blette, Bryan
Jairath, Vipul
Copas, Andrew
Harhay, Michael
author_facet Kahan, Brennan C
Li, Fan
Blette, Bryan
Jairath, Vipul
Copas, Andrew
Harhay, Michael
author_sort Kahan, Brennan C
collection PubMed
description BACKGROUND: Recent work has shown that cluster-randomised trials can estimate two distinct estimands: the participant-average and cluster-average treatment effects. These can differ when participant outcomes or the treatment effect depends on the cluster size (termed informative cluster size). In this case, estimators that target one estimand (such as the analysis of unweighted cluster-level summaries, which targets the cluster-average effect) may be biased for the other. Furthermore, commonly used estimators such as mixed-effects models or generalised estimating equations with an exchangeable correlation structure can be biased for both estimands. However, there has been little empirical research into whether informative cluster size is likely to occur in practice. METHOD: We re-analysed a cluster-randomised trial comparing two different thresholds for red blood cell transfusion in patients with acute upper gastrointestinal bleeding to explore whether estimates for the participant- and cluster-average effects differed, to provide empirical evidence for whether informative cluster size may be present. For each outcome, we first estimated a participant-average effect using independence estimating equations, which are unbiased under informative cluster size. We then compared this to two further methods: (1) a cluster-average effect estimated using either weighted independence estimating equations or unweighted cluster-level summaries, and (2) estimates from a mixed-effects model or generalised estimating equations with an exchangeable correlation structure. We then performed a small simulation study to evaluate whether observed differences between cluster- and participant-average estimates were likely to occur even if no informative cluster size was present. RESULTS: For most outcomes, treatment effect estimates from different methods were similar. However, differences of >10% occurred between participant- and cluster-average estimates for 5 of 17 outcomes (29%). We also observed several notable differences between estimates from mixed-effects models or generalised estimating equations with an exchangeable correlation structure and those based on independence estimating equations. For example, for the EQ-5D VAS score, the independence estimating equation estimate of the participant-average difference was 4.15 (95% confidence interval: −3.37 to 11.66), compared with 2.84 (95% confidence interval: −7.37 to 13.04) for the cluster-average independence estimating equation estimate, and 3.23 (95% confidence interval: −6.70 to 13.16) from a mixed-effects model. Similarly, for thromboembolic/ischaemic events, the independence estimating equation estimate for the participant-average odds ratio was 0.43 (95% confidence interval: 0.07 to 2.48), compared with 0.33 (95% confidence interval: 0.06 to 1.77) from the cluster-average estimator. CONCLUSION: In this re-analysis, we found that estimates from the various approaches could differ, which may be due to the presence of informative cluster size. Careful consideration of the estimand and the plausibility of assumptions underpinning each estimator can help ensure an appropriate analysis methods are used. Independence estimating equations and the analysis of cluster-level summaries (with appropriate weighting for each to correspond to either the participant-average or cluster-average treatment effect) are a desirable choice when informative cluster size is deemed possible, due to their unbiasedness in this setting.
format Online
Article
Text
id pubmed-10638852
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-106388522023-11-14 Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial Kahan, Brennan C Li, Fan Blette, Bryan Jairath, Vipul Copas, Andrew Harhay, Michael Clin Trials Articles BACKGROUND: Recent work has shown that cluster-randomised trials can estimate two distinct estimands: the participant-average and cluster-average treatment effects. These can differ when participant outcomes or the treatment effect depends on the cluster size (termed informative cluster size). In this case, estimators that target one estimand (such as the analysis of unweighted cluster-level summaries, which targets the cluster-average effect) may be biased for the other. Furthermore, commonly used estimators such as mixed-effects models or generalised estimating equations with an exchangeable correlation structure can be biased for both estimands. However, there has been little empirical research into whether informative cluster size is likely to occur in practice. METHOD: We re-analysed a cluster-randomised trial comparing two different thresholds for red blood cell transfusion in patients with acute upper gastrointestinal bleeding to explore whether estimates for the participant- and cluster-average effects differed, to provide empirical evidence for whether informative cluster size may be present. For each outcome, we first estimated a participant-average effect using independence estimating equations, which are unbiased under informative cluster size. We then compared this to two further methods: (1) a cluster-average effect estimated using either weighted independence estimating equations or unweighted cluster-level summaries, and (2) estimates from a mixed-effects model or generalised estimating equations with an exchangeable correlation structure. We then performed a small simulation study to evaluate whether observed differences between cluster- and participant-average estimates were likely to occur even if no informative cluster size was present. RESULTS: For most outcomes, treatment effect estimates from different methods were similar. However, differences of >10% occurred between participant- and cluster-average estimates for 5 of 17 outcomes (29%). We also observed several notable differences between estimates from mixed-effects models or generalised estimating equations with an exchangeable correlation structure and those based on independence estimating equations. For example, for the EQ-5D VAS score, the independence estimating equation estimate of the participant-average difference was 4.15 (95% confidence interval: −3.37 to 11.66), compared with 2.84 (95% confidence interval: −7.37 to 13.04) for the cluster-average independence estimating equation estimate, and 3.23 (95% confidence interval: −6.70 to 13.16) from a mixed-effects model. Similarly, for thromboembolic/ischaemic events, the independence estimating equation estimate for the participant-average odds ratio was 0.43 (95% confidence interval: 0.07 to 2.48), compared with 0.33 (95% confidence interval: 0.06 to 1.77) from the cluster-average estimator. CONCLUSION: In this re-analysis, we found that estimates from the various approaches could differ, which may be due to the presence of informative cluster size. Careful consideration of the estimand and the plausibility of assumptions underpinning each estimator can help ensure an appropriate analysis methods are used. Independence estimating equations and the analysis of cluster-level summaries (with appropriate weighting for each to correspond to either the participant-average or cluster-average treatment effect) are a desirable choice when informative cluster size is deemed possible, due to their unbiasedness in this setting. SAGE Publications 2023-07-13 2023-12 /pmc/articles/PMC10638852/ /pubmed/37439089 http://dx.doi.org/10.1177/17407745231186094 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Articles
Kahan, Brennan C
Li, Fan
Blette, Bryan
Jairath, Vipul
Copas, Andrew
Harhay, Michael
Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial
title Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial
title_full Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial
title_fullStr Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial
title_full_unstemmed Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial
title_short Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial
title_sort informative cluster size in cluster-randomised trials: a case study from the trigger trial
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638852/
https://www.ncbi.nlm.nih.gov/pubmed/37439089
http://dx.doi.org/10.1177/17407745231186094
work_keys_str_mv AT kahanbrennanc informativeclustersizeinclusterrandomisedtrialsacasestudyfromthetriggertrial
AT lifan informativeclustersizeinclusterrandomisedtrialsacasestudyfromthetriggertrial
AT blettebryan informativeclustersizeinclusterrandomisedtrialsacasestudyfromthetriggertrial
AT jairathvipul informativeclustersizeinclusterrandomisedtrialsacasestudyfromthetriggertrial
AT copasandrew informativeclustersizeinclusterrandomisedtrialsacasestudyfromthetriggertrial
AT harhaymichael informativeclustersizeinclusterrandomisedtrialsacasestudyfromthetriggertrial