Cargando…
On Modeling Missing Data in Structural Investigations Based on Tetrachoric Correlations With Free and Fixed Factor Loadings
In modeling missing data, the missing data latent variable of the confirmatory factor model accounts for systematic variation associated with missing data so that replacement of what is missing is not required. This study aimed at extending the modeling missing data approach to tetrachoric correlati...
Autores principales: | Schweizer, Karl, Gold, Andreas, Krampen, Dorothea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638985/ https://www.ncbi.nlm.nih.gov/pubmed/37970487 http://dx.doi.org/10.1177/00131644221143145 |
Ejemplares similares
-
On Modeling Missing Data of an Incomplete Design in the CFA Framework
por: Schweizer, Karl, et al.
Publicado: (2020) -
An effective sequence-alignment-free superpositioning of pairwise or multiple structures with missing data
por: Lu, Jianbo, et al.
Publicado: (2016) -
Scientometric trend analyses of publications on the history of psychology: Is psychology becoming an unhistorical science?
por: Krampen, Günter
Publicado: (2016) -
Improving data sharing in research with context-free encoded missing data
por: Hoevenaar-Blom, Marieke P., et al.
Publicado: (2017) -
Timelines of the “free-particle” and “fixed-particle” models of stone-formation: theoretical and experimental investigations
por: Kok, D. J., et al.
Publicado: (2016)